• Frontiers of Optoelectronics
  • Vol. 8, Issue 3, 269 (2015)
Mingzhang Deng, Weina Shi, Chen Zhao, Bingbing Chen, and Yan Shen*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
  • show less
    DOI: 10.1007/s12200-015-0531-x Cite this Article
    Mingzhang Deng, Weina Shi, Chen Zhao, Bingbing Chen, Yan Shen. ITO surface modification for inverted organic photovoltaics[J]. Frontiers of Optoelectronics, 2015, 8(3): 269 Copy Citation Text show less
    References

    [1] Hoppe H, Sariciftci N S. Organic solar cells: an overview. Journal of Materials Research, 2004, 19(7): 1924–1945

    [2] Cnops K, Rand B P, Cheyns D, Verreet B, Empl M A, Heremans P. 8.4% efficient fullerene-free organic solar cells exploiting longrange exciton energy transfer. Nature Communications, 2014, 5: 3406

    [3] Cao W, Xue J. Recent progress in organic photovoltaics: device architecture and optical design. Energy & Environmental Science, 2014, 7(7): 2123–2144

    [4] J rgensen M, Norrman K, Krebs F. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 2008, 92(7): 686–714

    [5] He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced powerconversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591–595

    [6] Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332

    [7] Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells. ACS Applied Materials & Interfaces, 2014, 6(24): 22628–22633

    [8] Guo Z, Shen Y, Wang M, Zhao F, Dong S. electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris (2,2-bipyridyl)ruthenium(II) multilayer films on Indium Tin oxide electrodes. Analytical Chemistry, 2004, 76(1): 184–191

    [9] Li L S, Li A D Q, Jia Q X. Effects of self-assembled multilayers on the evolution of surface physical properties of indium-tin-oxide. Applied Surface Science, 2003, 219(3–4): 199–202

    [10] Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617–1622

    [11] Park Y, Choong V, Gao Y, Hsieh B R, Tang CW. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters, 1996, 68(19): 2699–2701

    [12] Manor A, Katz E A. Open-circuit voltage of organic photovoltaics: Implications of the generalized Einstein relation for disordered semiconductors. Solar Energy Materials and Solar Cells, 2012, 97: 132–138

    [13] Zhang C, You H, Lin Z, Hao Y. Inverted organic photovoltaic cells with solution-processed zinc oxide as electron collecting layer. Japanese Journal of Applied Physics, 2011, 50(8R): 082302

    [14] Zhao DW, Sun XW, Jiang C Y, Kyaw A K K, Lo G Q, Kwong D L. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Applied Physics Letters, 2008, 93(8): 083305

    [15] Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Applied Physics Letters, 2008, 93(19): 193307

    Mingzhang Deng, Weina Shi, Chen Zhao, Bingbing Chen, Yan Shen. ITO surface modification for inverted organic photovoltaics[J]. Frontiers of Optoelectronics, 2015, 8(3): 269
    Download Citation