• Photonics Research
  • Vol. 2, Issue 1, 24 (2014)
Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, and Sylvain Blaize*
Author Affiliations
  • Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS-UMR 6279, Universite de Technologie de Troyes, CS 42060, 10004, Troyes, France
  • show less
    DOI: 10.1364/PRJ.2.000024 Cite this Article Set citation alerts
    Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, Sylvain Blaize. Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires[J]. Photonics Research, 2014, 2(1): 24 Copy Citation Text show less
    References

    [1] C. Bohren, D. Huffman. Absorption and Scattering of Light by Small Particles(1998).

    [2] E. Hutter, J. H. Fendler. Exploitation of localized surface plasmons resonance. Adv. Mater., 16, 1685-1706(2004).

    [3] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [4] W. H. Weber, G. W. Ford. Propagation of optical excitations by dipolar interactions in metal nanoparticles chains. Phys. Rev. B, 70, 125429(2004).

    [5] E. Popov, N. Bonod, S. Enoch. Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. Opt. Express, 15, 4224-4237(2007).

    [6] T. Yang, K. B. Crozier. Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model. Opt. Express, 16, 13070-13079(2008).

    [7] A. Hochman, Y. Leviatan. Rigorous modal analysis of metallic nanowire chains. Opt. Express, 17, 13561-13575(2009).

    [8] E. Simsek. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media. Opt. Express, 18, 1722-1733(2010).

    [9] A. F. Koenderink, A. Polman. Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys. Rev. B, 74, 033402(2006).

    [10] A. F. Koenderink, R. de Waele, J. C. Prangsma, A. Polman. Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides. Phys. Rev. B, 76, 201403(2007).

    [11] A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett., 91, 183901(2003).

    [12] K. B. Crozier, E. Togan, E. Simsek, T. Yang. Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticles chains. Opt. Express, 15, 17482-17493(2007).

    [13] H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, H. Xu. Multipolar plasmon resonances in individual Ag nanorice. ACS Nano., 4, 2649-2654(2010).

    [14] R. Quidant, C. Girard, J. C. Weeber, A. Dereux. Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains. Phys. Rev. B, 69, 085407(2004).

    [15] M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J. M. Lourtioz, B. Dagens. Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths. Appl. Phys. A, 109, 935-942(2012).

    [16] F. Beranl Arango, A. Kwadrin, A. F. Koenderink. Plasmonic antennas hybridized with dielectric waveguides. ACS Nano., 6, 10156-10167(2012).

    [17] M. Fevrier, P. Gogol, A. Aassime, R. Megy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, B. Dagens. Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett., 12, 1032-1037(2012).

    [18] A. Apuzzo, M. Fevrier, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lerondel, B. Dagens, S. Blaize. Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. Nano Lett., 13, 1000-1006(2013).

    [19] N. Chateau, J. P. Hugonin. Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A, 11, 1321-1331(1994).

    [20] P. Lalanne, E. Silberstein. Fourier-modal methods applied to waveguide computational problems. Opt. Express, 25, 1092-1094(2000).

    [21] C. B. Burckhardt. Diffraction of a plane wave at a sinusoidally stratified dielectric grating. J. Opt. Soc. Am., 56, 1502-1509(1966).

    [22] M. G. Moharam, E. B. Grann, D. A. Pommet. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

    [23] J. Merle Elson. Propagation in planar waveguides and the effects of wall roughness. Opt. Express, 9, 461-475(2001).

    [24] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).

    [25] G. Granet. Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J. Opt. Soc. Am. A, 16, 2510-2516(1999).

    [26] E. Popov, M. Neviere. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization. J. Opt. Soc. Am. A, 17, 1773-1784(2000).

    [27] A. Yariv, P. Yeh. Optical Waves in Crystals: Propagation and Control of Laser Radiation(2003).

    [28] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    CLP Journals

    [1] Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, Qihuang Gong. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187

    [2] Xu Yan, Haiwei Fu, Huidong Li, Xueguang Qiao. Simultaneous refractive index and temperature measurements by using dual interference in an all-fiber Mach–Zehnder interferometer[J]. Chinese Optics Letters, 2016, 14(3): 030603

    Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, Sylvain Blaize. Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires[J]. Photonics Research, 2014, 2(1): 24
    Download Citation