[1] 1姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 7-21.JIANGW H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 7-21. (in Chinese)
[2] 2鲍华, 饶长辉, 田雨, 等. 自适应光学图像事后重建技术研究进展[J]. 光电工程, 2018, 45(3): 64-73. doi: 10.12086/oee.2018.170730BAOH, RAOCH H, TIANY, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 64-73. (in Chinese). doi: 10.12086/oee.2018.170730
[3] 3钟梦圆, 姜麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索, 2022, 16(5): 972-990. doi: 10.3778/j.issn.1673-9418.2111126ZHONGM Y, JIANGL. Review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. (in Chinese). doi: 10.3778/j.issn.1673-9418.2111126
[4] 4黄健, 赵元元, 郭苹, 等. 深度学习的单幅图像超分辨率重建方法综述[J]. 计算机工程与应用, 2021, 57(18): 13-23.HUANGJ, ZHAOY Y, GUOP, et al. Survey of single image super-resolution based on deep learning[J]. Computer Engineering and Applications, 2021, 57(18): 13-23. (in Chinese)
[5] H M MA, H Q LIU, Y QIAO et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks. Optics Communications, 433, 283-289(2019).
[6] H KE, B XU, Z X XU et al. Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning. Optik, 178, 785-793(2019).
[7] X B FENG, X Q SU, J G SHEN et al. Single space object image denoising and super-resolution reconstructing using deep convolutional networks. Remote Sensing, 11, 1910(2019).
[8] C LEDIG, L THEIS, F HUSZÁR et al. Photo-realistic single image super-resolution using a generative adversarial network, 105-114(2017).
[9] 9蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142
[10] C L MATSON, K BORELLI, S JEFFERIES et al. Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects. Applied Optics, 48, A75-A92(2009).
[11] 11田雨, 饶长辉, 魏凯. 基于帧选择和多帧降质图像盲解卷积的自适应光学图像恢复[J]. 天文学报, 2008, 49(4): 455-462. doi: 10.3321/j.issn:0001-5245.2008.04.012TIANY, RAOCH H, WEIK. Adaptive optics images restoration based on frame selection and multi-frame blind deconvolution[J]. Acta Astronomica Sinica, 2008, 49(4): 455-462. (in Chinese). doi: 10.3321/j.issn:0001-5245.2008.04.012
[12] 12武兴睿. 基于PSF重构和改进的最大后验估计的自适应光学图像复原算法[J]. 液晶与显示, 2019, 34(9): 921-927. doi: 10.3788/yjyxs20193409.0921WUX R. Adaptive optical image restoration method based on PSF reconstruction and improved Maximum A Posteriori estimation[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 921-927. (in Chinese). doi: 10.3788/yjyxs20193409.0921
[13] 13鲍华, 饶长辉, 田雨, 等. 自适应光学图像事后重建技术研究进展[J]. 光电工程, 2018, 45(3): 64-73. doi: 10.12086/oee.2018.170730BAOH, RAOCH H, TIANY, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 64-73. (in Chinese). doi: 10.12086/oee.2018.170730
[14] G P CHEN, Z S GAO, Q L WANG et al. Blind de-convolution of images degraded by atmospheric turbulence. Applied Soft Computing, 89, 106131(2020).
[15] K SCHAWINSKI, C ZHANG, H T ZHANG et al. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Monthly Notices of the Royal Astronomical Society: Letters, 467, L110-L114(2017).
[16] C J SCHULER, M HIRSCH, S HARMELING et al. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1439-1451(2016).
[17] A ASENSIO RAMOS, A PASTOR YABAR. Real-time, multiframe, blind deconvolution of solar images. Astronomy & Astrophysics, 620(2018).
[18] J L SHI, R Z ZHANG, S P GUO et al. Space targets adaptive optics images blind restoration by convolutional neural network. Optical Engineering, 58(2019).
[19] R TSAI, T S HUANG. Multiframe image restoration and registration. Advances in Computer Vision and Image Processing, 1, 317-339(1984).
[20] H GREENSPAN. Super-resolution in medical imaging. The Computer Journal, 52, 43-63(2008).
[21] M W THORNTON, P M ATKINSON, D A HOLLAND. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. International Journal of Remote Sensing, 27, 473-491(2006).
[22] 22万雪芬, 韩芳, 蒋学芹, 等. 视频监控图像的超分辨率复原研究[J]. 激光杂志, 2014, 35(3): 5-8. doi: 10.3969/j.issn.0253-2743.2014.03.003WANX F, HANF, JIANGX Q, et al. Research on super-resolution surveillance image reconstruction[J]. Laser Journal, 2014, 35(3): 5-8. (in Chinese). doi: 10.3969/j.issn.0253-2743.2014.03.003
[23] 23张磊, 杨建峰, 薛彬, 等. 改进的最大后验概率估计法实现单幅图像超分辨率重建[J]. 激光与光电子学进展, 2011, 48(1): 82-87. doi: 10.3788/lop48.011003ZHANGL, YANGJ F, XUEB, et al. Modified MAP algorithm for single frame super-resolution reconstruction[J]. Laser & Optoelectronics Progress, 2011, 48(1): 82-87. (in Chinese). doi: 10.3788/lop48.011003
[24] 24赵芳薇, 邱钧, 刘畅. 一种反投影模型下的图像重建迭代算法[J]. 中北大学学报(自然科学版), 2015, 36(5): 577-584.ZHAOF W, QIUJ, LIUCH. An iterative algorithm for image reconstruction based on back-projection model[J]. Journal of North University of China (Natural Science Edition), 2015, 36(5): 577-584. (in Chinese)
[25] Z W WANG, D LIU, J C YANG et al. Deep networks for image super-resolution with sparse prior, 370-378(2015).