• Chinese Journal of Lasers
  • Vol. 51, Issue 21, 2107202 (2024)
Jianfeng Zhang1, Wangbo Jiao2, Haiming Fan2, and Xiaoli Liu3,4,*
Author Affiliations
  • 1School of Physics, Northwest University, Xi’an 710127, Shaanxi , China
  • 2Center for Nanomedicine and Engineering, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi , China
  • 3National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi China
  • 4Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi , China
  • show less
    DOI: 10.3788/CJL240826 Cite this Article Set citation alerts
    Jianfeng Zhang, Wangbo Jiao, Haiming Fan, Xiaoli Liu. Development of Magnetic‑Induction Hyperthermia System[J]. Chinese Journal of Lasers, 2024, 51(21): 2107202 Copy Citation Text show less
    References

    [1] Hildebrandt B, Wust P, Ahlers O et al. The cellular and molecular basis of hyperthermia[J]. Critical Reviews in Oncology/Hematology, 43, 33-56(2002).

    [2] Gordon R T, Hines J R, Gordon D. Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations[J]. Medical Hypotheses, 5, 83-102(1979).

    [3] Clerc P, Jeanjean P, Hallali N et al. Targeted magnetic intra-lysosomal hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death[J]. Journal of Controlled Release, 270, 120-134(2018).

    [4] Ma X W, Wang Y Y, Liu X L et al. Fe3O4-Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment[J]. Nanoscale Horizons, 4, 1450-1459(2019).

    [5] Ma G J, Jiang G T. Review of tumor hyperthermia technique in biomedical engineering frontier[C], 1357-1359(2010).

    [6] Qiu X J, Gu B G, Zhao H B et al. The development of cancer treatment equipment, started from scratches[J]. China Medical Device Information, 16, 26-58(2010).

    [7] Tasci T O, Vargel I, Arat A et al. Focused RF hyperthermia using magnetic fluids[J]. Medical Physics, 36, 1906-1912(2009).

    [8] Murase K, Takata H, Takeuchi Y et al. Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field[J]. Physica Medica, 29, 624-630(2013).

    [9] Myrovali E, Maniotis N, Samaras T et al. Spatial focusing of magnetic particle hyperthermia[J]. Nanoscale Advances, 2, 408-416(2019).

    [10] Carlton H, Weber M, Peters M et al. HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia[J]. International Journal of Hyperthermia, 40, 2272067(2023).

    [11] García O, Moreno-Arrones N, Cuesta A B et al. Development and testing of a new instrument for researching on cancer treatment technologies based on magnetic hyperthermia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4, 243-251(2016).

    [12] Zeinoun M, Serrano D, Medina P T et al. Configurable high-frequency alternating magnetic field generator for nanomedical magnetic hyperthermia applications[J]. IEEE Access, 9, 105805-105816(2021).

    [13] Connord V, Clerc P, Hallali N et al. Real-time analysis of magnetic hyperthermia experiments on living cells under a confocal microscope[J]. Small, 11, 2437-2445(2015).

    [14] Subramanian M, Miaskowski A, Pearce G et al. A coil system for real-time magnetic fluid hyperthermia microscopy studies[J]. International Journal of Hyperthermia, 32, 112-120(2016).

    [15] Subramanian M, Miaskowski A, Mahapatro A K et al. Practical bioinstrumentation developments for AC magnetic field-mediated magnetic nanoparticle heating applications[J]. Applied Physics A, 125, 194(2019).

    [16] Chen Y M. Magnetic induction heat effect and enzyme activity of Fe3O4 nanoparticles in active/passive diffusion media under alternating magnetic field[D], 43-47(2018).

    [17] Ren R F. Comparison between MOSFET and IGBT[J]. Heilongjiang Communications Technology, 37-38(2001).

    [18] Cano M E, Barrera A, Estrada J C et al. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements[J]. The Review of Scientific Instruments, 82, 114904(2011).

    [19] Wu Z H, Zhuo Z H, Cai D Y et al. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia[J]. Technology and Health Care, 23, S203-S209(2015).

    [20] Mohseni M, Rajaei A. Design of alternating magnetic field generator for magnetic fluid hyperthermia research application[J]. Scientia Iranica, 25, 3507-3516(2018).

    [21] Zhang L Z, Liu Z Y, Liu Y M et al. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance[J]. Biomaterials, 230, 119655(2020).

    [22] Zhai M M, Wen J, Yang J Q et al. Design of sine wave magnetic device for magnetic-induced tumor hyperthermia[J]. China Medical Equipment, 9, 36-38(2012).

    [23] Lacroix L M, Carrey J, Respaud M. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles[J]. The Review of Scientific Instruments, 79, 093909(2008).

    [24] Dürr S, Schmidt W, Janko C et al. A novel magnetic field device for inducing hyperthermia using magnetic nanoparticles[J]. Biomedizinische Technik, 58, 1-2(2013).

    [25] Garaio E, Collantes J M, Plazaola F et al. A multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments[J]. Measurement Science and Technology, 25, 115702(2014).

    [26] Ivkov R, DeNardo S J, Daum W et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer[J]. Clinical Cancer Research, 11, 7093s-7103s(2005).

    [27] Attaluri A, Jackowski J, Sharma A et al. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia[J]. International Journal of Hyperthermia, 37, 1-14(2020).

    [28] Kumar A, Attaluri A, Mallipudi R et al. Method to reduce non-specific tissue heating of small animals in solenoid coils[J]. International Journal of Hyperthermia, 29, 106-120(2013).

    [29] Skumiel A, Leszczyński B, Molcan M et al. The comparison of magnetic circuits used in magnetic hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 420, 177-184(2016).

    [30] Acero J, Alonso R, Burdio J M et al. Frequency-dependent resistance in Litz-wire planar windings for domestic induction heating appliances[J]. IEEE Transactions on Power Electronics, 21, 856-866(2006).

    [31] Hadadian Y, Azimbagirad M, Navas E A et al. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions[J]. The Review of Scientific Instruments, 90, 074701(2019).

    [32] Stauffer P R, Sneed P K, Hashemi H et al. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants[J]. IEEE Transactions on Bio-Medical Engineering, 41, 17-28(1994).

    [33] Bordelon D E, Goldstein R C, Nemkov V S et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications[J]. IEEE Transactions on Magnetics, 48, 47-52(2012).

    [34] Tang Y D, Jin T, Flesch R C C et al. Improvement of solenoid magnetic field and its influence on therapeutic effect during magnetic hyperthermia[J]. Journal of Physics D: Applied Physics, 53, 305003(2020).

    [35] Tang Y D, Ding Y B, Jin T. Research on optimization method of magnetic hyperthermia based on Helmholtz coil device[J]. Transactions of China Electrotechnical Society, 38, 1248-1260(2023).

    [36] Beiranvand R. Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system[J]. The Review of Scientific Instruments, 84, 075109(2013).

    [37] Piergentili F, Candini G P, Design Zannoni M., manufacturing, of a real-timetest test, three-axis magnetic field simulator[J]. IEEE Transactions on Aerospace and Electronic Systems, 47, 1369-1379(2011).

    [38] Ho S L, Niu S X, Fu W N. Design and analysis of novel focused hyperthermia devices[J]. IEEE Transactions on Magnetics, 48, 3254-3257(2012).

    [39] Ho S L, Jian L, Gong W et al. Design and analysis of a novel targeted magnetic fluid hyperthermia system for tumor treatment[J]. IEEE Transactions on Magnetics, 48, 3262-3265(2012).

    [40] Ma M, Zhang Y, Shen X L et al. Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields[J]. Nano Research, 8, 600-610(2015).

    [41] Morgan S M, Victora R H. Use of square waves incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment[J]. Applied Physics Letters, 97, 093705(2010).

    [42] Morgan S M, Sohn H, Victora R H. Use of trapezoidal waves and complementary static fields incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment[J]. Journal of Applied Physics, 109, 07B305(2011).

    [43] Allia P, Barrera G, Tiberto P. Nonharmonic driving fields for enhancement of nanoparticle heating efficiency in magnetic hyperthermia[J]. Physical Review Applied, 12, 034041(2019).

    [44] Barrera G, Allia P, Tiberto P. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms[J]. Nanoscale Advances, 2, 4652-4664(2020).

    [45] Zeinoun M, Domingo-Diez J, Rodriguez-Garcia M et al. Enhancing magnetic hyperthermia nanoparticle heating efficiency with non-sinusoidal alternating magnetic field waveforms[J]. Nanomaterials, 11, 3240(2021).

    [46] Wang H N, Chen L, Qi Y G et al. Ultrafast microwave photonics frequency measurement technology(invited)[J]. Laser & Optoelectronics Progress, 61, 0112003(2024).

    [47] Wang S R, Yan Z H, Sun Y C et al. Approach for measuring surface density of metal thin films based on full range fitting of X-ray absorption spectra[J]. Laser & Optoelectronics Progress, 61, 0512003(2024).

    [48] Xiong R, Zhang W T, Zhang Y F et al. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation[J]. Nanoscale, 11, 18081-18089(2019).

    [49] Zhang Y, Wang Y Y, Zhou Q et al. Precise regulation of enzyme-nanozyme cascade reaction kinetics by magnetic actuation toward efficient tumor therapy[J]. ACS Applied Materials & Interfaces, 13, 52395-52405(2021).

    [50] Jordan A, Scholz R, Maier-Hauff K et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 225, 118-126(2001).

    [51] Gneveckow U, Jordan A, Scholz R et al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia[J]. Medical Physics, 31, 1444-1451(2004).

    [52] Li Y Z. The development & research on tumor magnetic-induction hyperthermia facility[D], 72(2008).

    [53] Wang H, Wu J N, Zhang X W et al. Preoperative treatment planning method for magnetically induced hyperthermia using thermoseeds[J]. Journal of Medical and Biological Engineering, 36, 726-732(2016).

    [54] Johannsen M, Gneveckow U, Taymoorian K et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial[J]. International Journal of Hyperthermia, 23, 315-323(2007).

    Jianfeng Zhang, Wangbo Jiao, Haiming Fan, Xiaoli Liu. Development of Magnetic‑Induction Hyperthermia System[J]. Chinese Journal of Lasers, 2024, 51(21): 2107202
    Download Citation