• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 21, Issue 2, 125 (2023)
WANG Junnan1、2, CHEN Jiameng2、3, HE Qihui2、3, YANG Lei1、2, HOU Lei1、2、3、*, and SHI Wei2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11805/tkyda2022207 Cite this Article
    WANG Junnan, CHEN Jiameng, HE Qihui, YANG Lei, HOU Lei, SHI Wei. Detection of microwave and terahertz waves based on Rydberg atom[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(2): 125 Copy Citation Text show less
    References

    [1] IBALI. N,ADAMS C S. Rydberg physics[M]. Rydberg Physics:IOP Publishing, 2018. doi:10.1088/978-0-7503-1635-4ch1.

    [2] BRUNE M, SCHMIDT-KALER F, MAALI A, et al. Quantum rabi oscillation: a direct test of field quantization in a cavity[J]. Physical Review Letters, 1996,76(11):1800-1803. doi:10.1103/PhysRevLett.76.1800.

    [3] GORNIACZYK H,TRESP C,SCHMIDT J,et al. Single-photon transistor mediated by interstate Rydberg interactions[J]. Physical Review Letters, 2014,113(5):053601. doi:10.1103/PhysRevLett.113.053601.

    [4] TIARKS D,BAUR S,SCHNEIDER K,et al. Single-photon transistor using a f.rster resonance[J]. Physical Review Letters, 2014, 113(5):053602. doi:10.1103/PhysRevLett.113.053602.

    [5] SAFFMAN M,WALKER T G,M.LMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010,82(3): 2313-2363. doi:10.1103/RevModPhys.82.2313.

    [6] MAXWELL D, SZWER D J, PAREDES-BARATO D, et al. Storage and control of optical photons using Rydberg polaritons[J]. Physical Review Letters, 2013,110(10):103001. doi:10.1103/PhysRevLett.110.103001.

    [7] WEIMER H, MüLLER M, LESANOVSKY I, et al. A Rydberg quantum simulator[J]. Nature Physics, 2010, 6(5): 382-388. doi: 10.1038/nphys1614.

    [8] HOLLOWAY C L,GORDON J A,JEFFERTS S,et al. Broadband Rydberg atom-based electric-field probe for SI-traceable,self- calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. doi: 10.1109/TAP. 2014.2360208.

    [9] MOHAPATRA A K, BASON M G, BUTSCHER B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008,4(11):890-894. doi:10.1038/nphys1091.

    [10] SEDLACEK J A, SCHWETTMANN A, KüBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012,8(11):819-824. doi:10.1038/nphys2423.

    [11] STOCK M. Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram[J]. Metrologia, 2012,50(1):R1-R16. doi:10.1088/0026-1394/50/1/r1.

    [12] ARORA B, SAFRONOVA M S, CLARK C W. Determination of electric-dipole matrix elements in K and Rb from stark shift measurements[J]. Physical Review A, 2007,76(5):052516-1-5. doi:10.1103/PhysRevA.76.052516.

    [13] SIMONS M T, GORDON J A, HOLLOWAY C L, et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 2016,108(17):174101. doi:10.1063/1.4947231.

    [14] GORDON J A,SIMONS M T,HADDAB A H,et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 2019,9(4):045030. doi:10.1063/1.5095633.

    [15] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020,16(9):911-915. doi:10.1038/s41567-020-0918-5.

    [16] SCHOLL P,WILLIAMS H J,BORNET G,et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms[J]. PRX Quantum, 2022,3(2):020303. doi:10.1103/PRXQuantum.3.020303.

    [17] CHOPINAUD A,PRITCHARD J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review A, 2021,16 (2):024008. doi:10.1103/PhysRevApplied.16.024008.

    [18] VOGT T,GROSS C,HAN J,et al. Efficient microwave-to-optical conversion using Rydberg atoms[J]. Physical Review A, 2019,99 (2):023832. doi:10.1103/PhysRevA.99.023832.

    [19] JIA F D,LIU X B,MEI J,et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 2021,103(6):063113. doi:10.1103/PhysRevA.103.063113.

    [20] MORGAN A A,HOGAN S D. Coupling Rydberg atoms to microwave fields in a superconducting coplanar waveguide resonator [J]. Physical Review Letters, 2020,124(19):193604.

    [21] NAFTALY M, VIEWEG N, DENINGER A. Industrial applications of terahertz sensing: state of play[J]. Sensors, 2019, 19(19): 4203. doi:10.3390/s19194203.

    [22] DHILLON S S,VITIELLO M S,LINFIELD E H,et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D:Applied Physics, 2017,50(4):043001. doi:10.1088/1361-6463/50/4/043001.

    [23] YU L,HAO L,MEIQIONG T,et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC Advances, 2019,9(17):9354-9363. doi:10.1039/C8RA10605C.

    [25] MüLLER R, BOHMEYER W, KEHRT M, et al. Novel detectors for traceable THz power measurements[J]. Journal of Infrared Millim Terahertz Waves, 2014,35(8):659-670. doi:10.1007/s10762-014-0066-z.

    [26] LEWIS R A. A review of terahertz detectors[J]. Journal of Physics D:Applied Physics, 2019,52(43):433001. doi:10.1088/1361-6463/ab31d5.

    [27] WADE C G. Terahertz wave detection and imaging with a hot Rydberg vapour[D]. Switzerland: Springer Theses, 2018. doi: 10.1007/978-3-319-94908-6.

    [28] CHEN S,REED D J,MACKELLAR A R,et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 2022,9 (5):485-491. doi:10.1364/OPTICA.456761.

    [29] CARR C,ADAMS C S,WEATHERILL K J. Polarization spectroscopy of an excited state transition[J]. Optics Letters, 2012,37(1): 118. doi:10.1364/OL.37.000118.

    [30] CARR C, TANASITTIKOSOL M, SARGSYAN A, et al. Three-photon electromagnetically induced transparency using Rydberg states[J]. Optics Letters, 2012,37(18):3858. doi:10.1364/OL.37.003858.

    [31] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Electric field metrology for Si traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 2017, 121(23): 233106. doi:10.1063/1.4984201.

    [32] ZHOU Y,PENG R,ZHANG J,et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 2022,14(3):1-8. doi:10.1109/JPHOT.2022.3178190.

    [33] THAICHAROEN N,MOORE K R,ANDERSON D A,et al. Electromagnetically induced transparency,absorption,and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 2019,100(6):063427. doi: 10.1103/PhysRevA.100.063427.

    [34] ADAM A J L. Review of near-field terahertz measurement methods and their applications[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2011,32(8):976. doi:10.1007/s10762-011-9809-2.

    [35] CHAN W L, DEIBEL J, MITTLEMAN D M. Imaging with terahertz radiation[J]. Reports on Progress in Physics, 2007, 70(8): 1325-1379. doi:10.1088/0034-4885/70/8/r02.

    [36] BITZER A, MERBOLD H, THOMAN A, et al. Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial[J]. Optics Express, 2009,17(5):3826-3834. doi:10.1364/OE.17.003826.

    [37] ACUNA G, HEUCKE S F, KUCHLER F, et al. Surface plasmons in terahertz metamaterials[J]. Optics Express, 2008, 16(23): 18745-18751. doi:10.1364/OE.16.018745.

    [38] MITROFANOV O, TAN T, MARK P R, et al. Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy[J]. Applied Physics Letters, 2009,94(17):171104. doi:10.1063/1.3126053.

    [39] NIELSEN K,RASMUSSEN H K,ADAM A J L,et al. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Optics Express, 2009,17(10):8592-8601. doi:10.1364/OE.17.008592.

    [40] BITZER A, WALTHER M. Terahertz near-field imaging of metallic subwavelength holes and hole arrays[J]. Applied Physics Letters, 2008,92(23):231101. doi:10.1063/1.2936303.

    [41] BARAGWANATH A J, FREEMAN J R, GALLANT A J, et al. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source[J]. Optics Express, 2011,36(13):2393-2395. doi:10.1364/OL.36.002393.

    [42] DEAN P, MITROFANOV O, KEELEY J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser[J]. Applied Physics Letters, 2016,108(9):091113. doi:10.1063/1.4943088.

    [43] WADE C G, .IBALI. N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017,11(1):40-43. doi:10.1038/nphoton.2016.214.

    [44] DOWNES L A,MACKELLAR A R,WHITING D J,et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor [J]. Physical Review X, 2020,10(1):011027. doi:10.1103/PhysRevX.10.011027.

    [45] FAN S, QI F, NOTAKE T, et al. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a dast crystal[J]. Optics Express, 2015,23(6):7611-7618. doi:10.1364/OE.23.007611.

    [46] JANSEN C, WIETZKE S, PETERS O, et al. Terahertz imaging: applications and perspectives[J]. Applied Optics, 2010, 49(19): E48-E57. doi:10.1364/AO.49.000E48.

    [47] MITTLEMAN D M. Twenty years of terahertz imaging[invited][J]. Optics Express, 2018,26(8):9417-9431. doi:10.1364/OE.26. 009417.

    WANG Junnan, CHEN Jiameng, HE Qihui, YANG Lei, HOU Lei, SHI Wei. Detection of microwave and terahertz waves based on Rydberg atom[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(2): 125
    Download Citation