[1] G. A. Keeler. Optical microsystem technologies and applications. Optical Fiber Communication Conference, M1A-1(2021).
[2] D. A. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).
[3] R. Polster, Y. Thonnart, G. Waltener. Efficiency optimization of silicon photonic links in 65-nm CMOS and 28-nm FDSOI technology nodes. IEEE Trans. Very Large Scale Integr. Syst., 24, 3450-3459(2016).
[4] E. Berikaa, M. S. Alam, S. Bernal. Next-generation O-band coherent transmission for 1.6 Tbps 10 km intra-datacenter interconnects. J. Lightwave Technol., 42, 1126-1135(2023).
[5] A. Rizzo, A. Novick, V. Gopal. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics, 17, 781-790(2023).
[6] M. Dumont, S. Liu, M. Kennedy. High-efficiency quantum dot lasers as comb sources for DWDM applications. Appl. Sci., 12, 1836(2022).
[7] X. Zheng, S. Lin, Y. Luo. Efficient WDM laser sources towards terabyte/s silicon photonic interconnects. J. Lightwave Technol., 31, 4142-4154(2013).
[8] E. Lucas, S.-P. Yu, T. C. Briles. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photonics, 17, 943-950(2023).
[9] B. Buscaino, E. Chen, J. W. Stewart. External vs. integrated light sources for intra-data center co-packaged optical interfaces. J. Lightwave Technol., 39, 1984-1996(2021).
[10] Z. Zhang, D. Jung, J. C. Norman. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 25, 1900509(2019).
[11] C. Xiang, W. Jin, J. Guo. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2020).
[12] D. Huang, P. Pintus, J. E. Bowers. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon. Opt. Mater. Express, 8, 2471-2483(2018).
[13] K. Y. Yang, C. Shirpurkar, A. D. White. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun., 13, 7862(2022).
[14] K. Hosseini, E. Kok, S. Y. Shumarayev. 8 Tbps co-packaged FPGA and silicon photonics optical IO. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).
[15] Y. Bian, T. Hirokawa, V. Karra. Monolithically integrated self-aligned SiN edge coupler with <0.6/0.8 dB TE/TM insertion loss, <–39 dB back reflection and >520 mW high-power handling capability. Optical Fiber Communication Conference, M3C-3(2023).
[16] K. Padmaraju, X. Zhu, L. Chen. Intermodulation crosstalk characteristics of WDM silicon microring modulators. IEEE Photonics Technol. Lett., 26, 1478-1481(2014).
[17] A. James, A. Novick, A. Rizzo. Scaling comb-driven resonator-based DWDM silicon photonic links to multi-Tb/s in the multi-FSR regime. Optica, 10, 832-840(2023).
[18] K. Padmaraju, N. Ophir, Q. Xu. Error-free transmission of microring-modulated BPSK. Opt. Express, 20, 8681-8688(2012).
[19] M. Georgas, J. Leu, B. Moss. Addressing link-level design tradeoffs for integrated photonic interconnects. IEEE Custom Integrated Circuits Conference (CICC), 1-8(2011).
[20] A. Malik, S. Liu, E. Timurdogan. Low power consumption silicon photonics datacenter interconnects enabled by a parallel architecture. Optical Fiber Communication Conference, W6A-3(2021).
[21] C. Xiang, W. Jin, D. Huang. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2021).
[22] . 400G-FR4 QSFP-DD OCP optical transceiver specification revision 0.1.
[23] M. van Niekerk, V. Deenadalayan, A. Rizzo. Wafer-scale-compatible substrate undercut for ultra-efficient SOI thermal phase shifters. 2022 Conference on Lasers and Electro-Optics (CLEO), 1-2(2022).
[24] A. Ribeiro, S. Declercq, U. Khan. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100708(2020).
[25] D. Coenen, M. Kim, H. Oprins. Thermal modeling of hybrid three-dimensional integrated, ring-based silicon photonic–electronic transceivers. J. Opt. Microsyst., 4, 011004(2023).
[26] H. Jayatilleka, H. Frish, R. Kumar. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. J. Lightwave Technol., 39, 5083-5088(2021).
[27] S. S. Djordjevic, K. Shang, B. Guan. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express, 21, 13958-13968(2013).
[28] . 10 GB/s high-sensitivity limiting PIN-TIA optical receiver.
[29] H. Al Maruf, M. Chowdhury. Memory disaggregation: advances and open challenges. ACM SIGOPS Oper. Syst. Rev., 57, 29-37(2023).
[30] Z. Wang, H. Huang, J. Zhang. Shuhai: benchmarking high bandwidth memory on FPGAS. IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 111-119(2020).
[31] L. H. Brendler, A. L. Zimpeck, C. Meinhardt. Multi-level design influences on robustness evaluation of 7 nm FinFET technology. IEEE Trans. Circuits Syst. I, Reg. Papers, 67, 553-564(2019).
[32] B. Dong, M. Dumont, O. Terra. Broadband quantum-dot frequency-modulated comb laser. Light Sci. Appl., 12, 182(2023).
[33] J. Duan, Y. Zhou, B. Dong. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).
[34] Y. Gao, N. Pestana, S. Deckoff-Jones. Passive integrated athermal (de)multiplexers on 300 mm silicon photonics wafers. Optical Fiber Communication Conference, M4I-3(2023).
[35] A. M. Netherton, Y. Gao, N. Pestana. Athermal, fabrication-tolerant Si-SiN FIR filters for a silicon photonics foundry platform. Opt. Express, 31, 23952-23965(2023).
[36] N. M. Fahrenkopf, C. McDonough, G. L. Leake. The aim photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8201406(2019).
[37] M. De Cea, A. H. Atabaki, R. J. Ram. Power handling of silicon microring modulators. Opt. Express, 27, 24274-24285(2019).
[38] A. V. Krishnamoorthy, X. Zheng, G. Li. Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices. IEEE Photonics J., 3, 567-579(2011).
[39] A. Rizzo, V. Deenadayalan, M. van Niekerk. Ultra-efficient foundry-fabricated resonant modulators with thermal undercut. CLEO: Science and Innovations, SF2K-6(2023).
[40] D. A. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).
[41] D. Gostimirovic, N. Y. Winnie. Ultralow-power double vertical junction microdisk modulators. IEEE J. Sel. Top. Quantum Electron., 27, 3400907(2021).
[42] H. Gevorgyan, A. Khilo, M. T. Wade. Moscap ring modulator with 1.5 μm radius, 8.5 THz FSR and 30 GHz/V shift efficiency in a 45 nm SOI CMOS process. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).
[43] H. Yu, D. Ying, M. Pantouvaki. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express, 22, 15178-15189(2014).
[44] M. Bahadori, D. Nikolova, S. Rumley. Optimization of microring-based filters for dense WDM silicon photonic interconnects. IEEE Optical Interconnects Conference (OI), 84-85(2015).
[45] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).
[46] A. Li, T. Van Vaerenbergh, P. De Heyn. Backscattering in silicon microring resonators: a quantitative analysis. Laser Photonics Rev., 10, 420-431(2016).
[47] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).
[48] J. Zhang, B. P.-P. Kuo, S. Radic. 64 Gb/s PAM4 and 160 Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt. Express, 28, 23266-23273(2020).
[49] J. Kim, M. Laemmlin, C. Meuer. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron., 45, 240-248(2009).
[50] S. Daudlin, A. Rizzo, S. Lee. 3d photonics for ultra-low energy, high bandwidth-density chip data links. arXiv(2023).
[51] S. Jangam, S. S. Iyer. Silicon-interconnect fabric for fine-pitch (≤10 μm) heterogeneous integration. IEEE Trans. Compon. Packag. Technol., 11, 727-738(2021).
[52] M. L. Davenport, S. Liu, J. E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photonics Res., 6, 468-478(2018).
[53] K. Feng, C. Shang, E. Hughes. Quantum dot lasers directly grown on 300 mm Si wafers: planar and in-pocket. Photonics, 10, 534(2023).