• Photonics Research
  • Vol. 12, Issue 11, A69 (2024)
Andrew Netherton1, Mario Dumont1, Zachary Nelson1, Jahyun Koo1..., Jinesh Jhonsa1, Alice Mo1, David McCarthy1, Skylar Deckoff-Jones2, Yun Gao1, Noah Pestana2, Jordan Goldstein2, Ren-Jye Shiue2, Christopher Poulton2, M. J. Kennedy1, Mark Harrington1, Bozhang Dong1, Jock Bovington3, Michael Frankel4, Luke Theogarajan1, Michael Watts2, Daniel Blumenthal1 and John E. Bowers1,*|Show fewer author(s)
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  • 2Analog Photonics, Boston, Massachusetts 02210, USA
  • 3Cisco Systems, San Jose, California 95134, USA
  • 4Ciena Corporation, Hanover, Maryland 21076, USA
  • show less
    DOI: 10.1364/PRJ.520203 Cite this Article Set citation alerts
    Andrew Netherton, Mario Dumont, Zachary Nelson, Jahyun Koo, Jinesh Jhonsa, Alice Mo, David McCarthy, Skylar Deckoff-Jones, Yun Gao, Noah Pestana, Jordan Goldstein, Ren-Jye Shiue, Christopher Poulton, M. J. Kennedy, Mark Harrington, Bozhang Dong, Jock Bovington, Michael Frankel, Luke Theogarajan, Michael Watts, Daniel Blumenthal, John E. Bowers, "High capacity, low power, short reach integrated silicon photonic interconnects," Photonics Res. 12, A69 (2024) Copy Citation Text show less
    References

    [1] G. A. Keeler. Optical microsystem technologies and applications. Optical Fiber Communication Conference, M1A-1(2021).

    [2] D. A. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).

    [3] R. Polster, Y. Thonnart, G. Waltener. Efficiency optimization of silicon photonic links in 65-nm CMOS and 28-nm FDSOI technology nodes. IEEE Trans. Very Large Scale Integr. Syst., 24, 3450-3459(2016).

    [4] E. Berikaa, M. S. Alam, S. Bernal. Next-generation O-band coherent transmission for 1.6  Tbps 10  km intra-datacenter interconnects. J. Lightwave Technol., 42, 1126-1135(2023).

    [5] A. Rizzo, A. Novick, V. Gopal. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics, 17, 781-790(2023).

    [6] M. Dumont, S. Liu, M. Kennedy. High-efficiency quantum dot lasers as comb sources for DWDM applications. Appl. Sci., 12, 1836(2022).

    [7] X. Zheng, S. Lin, Y. Luo. Efficient WDM laser sources towards terabyte/s silicon photonic interconnects. J. Lightwave Technol., 31, 4142-4154(2013).

    [8] E. Lucas, S.-P. Yu, T. C. Briles. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photonics, 17, 943-950(2023).

    [9] B. Buscaino, E. Chen, J. W. Stewart. External vs. integrated light sources for intra-data center co-packaged optical interfaces. J. Lightwave Technol., 39, 1984-1996(2021).

    [10] Z. Zhang, D. Jung, J. C. Norman. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 25, 1900509(2019).

    [11] C. Xiang, W. Jin, J. Guo. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2020).

    [12] D. Huang, P. Pintus, J. E. Bowers. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon. Opt. Mater. Express, 8, 2471-2483(2018).

    [13] K. Y. Yang, C. Shirpurkar, A. D. White. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun., 13, 7862(2022).

    [14] K. Hosseini, E. Kok, S. Y. Shumarayev. 8  Tbps co-packaged FPGA and silicon photonics optical IO. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).

    [15] Y. Bian, T. Hirokawa, V. Karra. Monolithically integrated self-aligned SiN edge coupler with <0.6/0.8  dB TE/TM insertion loss, <–39  dB back reflection and >520  mW high-power handling capability. Optical Fiber Communication Conference, M3C-3(2023).

    [16] K. Padmaraju, X. Zhu, L. Chen. Intermodulation crosstalk characteristics of WDM silicon microring modulators. IEEE Photonics Technol. Lett., 26, 1478-1481(2014).

    [17] A. James, A. Novick, A. Rizzo. Scaling comb-driven resonator-based DWDM silicon photonic links to multi-Tb/s in the multi-FSR regime. Optica, 10, 832-840(2023).

    [18] K. Padmaraju, N. Ophir, Q. Xu. Error-free transmission of microring-modulated BPSK. Opt. Express, 20, 8681-8688(2012).

    [19] M. Georgas, J. Leu, B. Moss. Addressing link-level design tradeoffs for integrated photonic interconnects. IEEE Custom Integrated Circuits Conference (CICC), 1-8(2011).

    [20] A. Malik, S. Liu, E. Timurdogan. Low power consumption silicon photonics datacenter interconnects enabled by a parallel architecture. Optical Fiber Communication Conference, W6A-3(2021).

    [21] C. Xiang, W. Jin, D. Huang. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2021).

    [22] . 400G-FR4 QSFP-DD OCP optical transceiver specification revision 0.1.

    [23] M. van Niekerk, V. Deenadalayan, A. Rizzo. Wafer-scale-compatible substrate undercut for ultra-efficient SOI thermal phase shifters. 2022 Conference on Lasers and Electro-Optics (CLEO), 1-2(2022).

    [24] A. Ribeiro, S. Declercq, U. Khan. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100708(2020).

    [25] D. Coenen, M. Kim, H. Oprins. Thermal modeling of hybrid three-dimensional integrated, ring-based silicon photonic–electronic transceivers. J. Opt. Microsyst., 4, 011004(2023).

    [26] H. Jayatilleka, H. Frish, R. Kumar. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. J. Lightwave Technol., 39, 5083-5088(2021).

    [27] S. S. Djordjevic, K. Shang, B. Guan. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express, 21, 13958-13968(2013).

    [28] . 10  GB/s high-sensitivity limiting PIN-TIA optical receiver.

    [29] H. Al Maruf, M. Chowdhury. Memory disaggregation: advances and open challenges. ACM SIGOPS Oper. Syst. Rev., 57, 29-37(2023).

    [30] Z. Wang, H. Huang, J. Zhang. Shuhai: benchmarking high bandwidth memory on FPGAS. IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 111-119(2020).

    [31] L. H. Brendler, A. L. Zimpeck, C. Meinhardt. Multi-level design influences on robustness evaluation of 7  nm FinFET technology. IEEE Trans. Circuits Syst. I, Reg. Papers, 67, 553-564(2019).

    [32] B. Dong, M. Dumont, O. Terra. Broadband quantum-dot frequency-modulated comb laser. Light Sci. Appl., 12, 182(2023).

    [33] J. Duan, Y. Zhou, B. Dong. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).

    [34] Y. Gao, N. Pestana, S. Deckoff-Jones. Passive integrated athermal (de)multiplexers on 300 mm silicon photonics wafers. Optical Fiber Communication Conference, M4I-3(2023).

    [35] A. M. Netherton, Y. Gao, N. Pestana. Athermal, fabrication-tolerant Si-SiN FIR filters for a silicon photonics foundry platform. Opt. Express, 31, 23952-23965(2023).

    [36] N. M. Fahrenkopf, C. McDonough, G. L. Leake. The aim photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8201406(2019).

    [37] M. De Cea, A. H. Atabaki, R. J. Ram. Power handling of silicon microring modulators. Opt. Express, 27, 24274-24285(2019).

    [38] A. V. Krishnamoorthy, X. Zheng, G. Li. Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices. IEEE Photonics J., 3, 567-579(2011).

    [39] A. Rizzo, V. Deenadayalan, M. van Niekerk. Ultra-efficient foundry-fabricated resonant modulators with thermal undercut. CLEO: Science and Innovations, SF2K-6(2023).

    [40] D. A. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).

    [41] D. Gostimirovic, N. Y. Winnie. Ultralow-power double vertical junction microdisk modulators. IEEE J. Sel. Top. Quantum Electron., 27, 3400907(2021).

    [42] H. Gevorgyan, A. Khilo, M. T. Wade. Moscap ring modulator with 1.5  μm radius, 8.5  THz FSR and 30  GHz/V shift efficiency in a 45  nm SOI CMOS process. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).

    [43] H. Yu, D. Ying, M. Pantouvaki. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express, 22, 15178-15189(2014).

    [44] M. Bahadori, D. Nikolova, S. Rumley. Optimization of microring-based filters for dense WDM silicon photonic interconnects. IEEE Optical Interconnects Conference (OI), 84-85(2015).

    [45] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [46] A. Li, T. Van Vaerenbergh, P. De Heyn. Backscattering in silicon microring resonators: a quantitative analysis. Laser Photonics Rev., 10, 420-431(2016).

    [47] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [48] J. Zhang, B. P.-P. Kuo, S. Radic. 64  Gb/s PAM4 and 160  Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt. Express, 28, 23266-23273(2020).

    [49] J. Kim, M. Laemmlin, C. Meuer. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron., 45, 240-248(2009).

    [50] S. Daudlin, A. Rizzo, S. Lee. 3d photonics for ultra-low energy, high bandwidth-density chip data links. arXiv(2023).

    [51] S. Jangam, S. S. Iyer. Silicon-interconnect fabric for fine-pitch (≤10  μm) heterogeneous integration. IEEE Trans. Compon. Packag. Technol., 11, 727-738(2021).

    [52] M. L. Davenport, S. Liu, J. E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photonics Res., 6, 468-478(2018).

    [53] K. Feng, C. Shang, E. Hughes. Quantum dot lasers directly grown on 300  mm Si wafers: planar and in-pocket. Photonics, 10, 534(2023).

    Andrew Netherton, Mario Dumont, Zachary Nelson, Jahyun Koo, Jinesh Jhonsa, Alice Mo, David McCarthy, Skylar Deckoff-Jones, Yun Gao, Noah Pestana, Jordan Goldstein, Ren-Jye Shiue, Christopher Poulton, M. J. Kennedy, Mark Harrington, Bozhang Dong, Jock Bovington, Michael Frankel, Luke Theogarajan, Michael Watts, Daniel Blumenthal, John E. Bowers, "High capacity, low power, short reach integrated silicon photonic interconnects," Photonics Res. 12, A69 (2024)
    Download Citation