• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 3, 32003 (2022)
Guanchao He, Minmin Yan, Haisheng Gong, Huilong Fei*, and Shuangyin Wang
Author Affiliations
  • State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac670b Cite this Article
    Guanchao He, Minmin Yan, Haisheng Gong, Huilong Fei, Shuangyin Wang. Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 32003 Copy Citation Text show less
    References

    [1] Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q and Zhang T 2020 Single-atom catalysts based on the metal-oxide interaction Chem. Rev. 120 11986–2043

    [2] Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y and Duan X F 2019 Single atom electrocatalysts supported on graphene or graphene-like carbons Chem. Soc. Rev. 48 5207–41

    [3] Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y and Zhang T 2013 Single-atom catalysts: a new frontier in heterogeneous catalysis Acc. Chem. Res. 46 1740–8

    [4] Li Z J, Wang D H, Wu Y E and Li Y D 2018 Recent advances in the precise control of isolated single-site catalysts by chemical methods Natl Sci. Rev. 5 673–89

    [5] Fu Q, Saltsburg H and Flytzani-Stephanopoulos M 2003 Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts Science 301 935–8

    [6] Hackett S F J, Brydson R M, Gass M H, Harvey I, Newman A D, Wilson K and Lee A F 2007 High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols Angew. Chem., Int. Ed. 46 8593–6

    [7] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J and Zhang T 2011 Single-atom catalysis of CO oxidation using Pt1/FeOx Nat. Chem. 3 634–41

    [8] Peng Y, Lu B Z and Chen S W 2018 Carbon-supported single atom catalysts for electrochemical energy conversion and storage Adv. Mater. 30 1801995

    [9] Xi J B, Jung H S, Xu Y, Xiao F, Bae J W and Wang S 2021 Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts Adv. Funct. Mater. 31 2008318

    [10] Liu J Y 2017 Catalysis by supported single metal atoms ACS Catal. 7 34–59

    [11] Shi Y S, Zhao C Y, Wei H S, Guo J H, Liang S X, Wang A Q, Zhang T, Liu J Y and Ma T L 2014 Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization Adv. Mater. 26 8147–53

    [12] Zhang W and Zheng W T 2016 Single atom excels as the smallest functional material Adv. Funct. Mater. 26 2988–93

    [13] Mitchell S, Vorobyeva E and Pérez-Ramírez J 2018 The multifaceted reactivity of single-atom heterogeneous catalysts Angew. Chem., Int. Ed. 57 15316–29

    [14] Zhu C Z, Fu S F, Shi Q R, Du D and Lin Y H 2017 Single-atom electrocatalysts Angew. Chem., Int. Ed. 56 13944–60

    [15] Li X Y, Rong H P, Zhang J T, Wang D S and Li Y D 2020 Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance Nano Res. 13 1842–55

    [16] Wang J, Li Z J, Wu Y E and Li Y D 2018 Fabrication of single-atom catalysts with precise structure and high metal loading Adv. Mater. 30 1801649

    [17] Liu J J et al 2021 Edge-hosted Fe–N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction Chem. Catal. 1 1291–307

    [18] Liu J J, Gong Z C, Yan M M, He G C, Gong H S, Ye G L and Fei H L 2022 Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2 Small 18 2103824

    [19] Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z H, Zhou M, Li S, Wang Y H and Cheng C 2021 Designing MOF nanoarchitectures for electrochemical water splitting Adv. Mater. 33 2006042

    [20] Xiong H F, Datye A K and Wang Y 2021 Thermally stable single-atom heterogeneous catalysts Adv. Mater. 33 2004319

    [21] Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T and Liu J Y 2015 Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI) Nano Res. 8 2913–24

    [22] Hansen T W, DeLaRiva A T, Challa S R and Datye A K 2013 Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46 1720–30

    [23] Ouyang R H, Liu J X and Li W X 2013 Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions J. Am. Chem. Soc. 135 1760–71

    [24] Wan C Z and Duan X F 2019 Microwave shock synthesis beyond thermodynamic equilibrium Matter 1 555–7

    [25] Giugni A 2019 Non-locality by nanoconfinement Nat. Nanotechnol. 14 814–5

    [26] Yao Y G et al 2019 High temperature shockwave stabilized single atoms Nat. Nanotechnol. 14 851–7

    [27] Du C F, Sun X L, Yu H, Fang W, Jing Y, Wang Y H, Li S Q, Liu X H and Yan Q Y 2020 V4C3Tx MXene: a promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity InfoMat 2 950–9

    [28] Peng Y D, Cao J Y, Sha Y, Yang W J, Li L and Liu Z 2021 Laser solid-phase synthesis of single-atom catalysts Light Sci. Appl. 10 168

    [29] O’Neill B J, Jackson D H K, Lee J, Canlas C, Stair P C, Marshall C L, Elam J W, Kuech T F, Dumesic J A and Huber G W 2015 Catalyst design with atomic layer deposition ACS Catal. 5 1804–25

    [30] Cheng N C and Sun X L 2017 Single atom catalyst by atomic layer deposition technique Chin. J. Catal. 38 1508–14

    [31] Chen Y X, Huang Z W, Ma Z, Chen J M and Tang X F 2017 Fabrication, characterization, and stability of supported single-atom catalysts Catal. Sci. Technol. 7 4250–8

    [32] Zhang L Z et al 2018 Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions Chem 4 285–97

    [33] Long Y P et al 2021 Hedgehog artificial macrophage with atomic-catalytic centers to combat drug-resistant bacteria Nat. Commun. 12 6143

    [34] Gao Y et al 2021 Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts Angew. Chem., Int. Ed. 60 22513–21

    [35] Li S, Chen B B, Wang Y, Ye M Y, van Aken P A, Cheng C and Thomas A 2021 Oxygen-evolving catalytic atoms on metal carbides Nat. Mater. 20 1240–7

    [36] Liu L C, Meira D M, Arenal R, Concepcion P, Puga A V and Corma A 2019 Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9 10626–39

    [37] Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S and Li Y D 2020 Chemical synthesis of single atomic site catalysts Chem. Rev. 120 11900–55

    [38] Hu Y F, Li H X, Li Z S, Li B L, Wang S Y, Yao Y C and Yu C L 2021 Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals Green Chem. 23 8754–94

    [39] Wang A Q, Li J and Zhang T 2018 Heterogeneous single-atom catalysis Nat. Rev. Chem. 2 65–81

    [40] Wang Y X et al 2020 Advanced electrocatalysts with single-metal-atom active sites Chem. Rev. 120 12217–314

    [41] Ma Y F, Chi B L, Liu W, Cao L N, Lin Y, Zhang X H, Ye X X, Wei S Q and Lu J L 2019 Tailoring of the proximity of platinum single atoms on CeO2 using phosphorus boosts the hydrogenation activity ACS Catal. 9 8404–12

    [42] Qin R X, Liu K L, Wu Q Y and Zheng N F 2020 Surface coordination chemistry of atomically dispersed metal catalysts Chem. Rev. 120 11810–99

    [43] Yao Y G et al 2018 Carbothermal shock synthesis of high-entropy-alloy nanoparticles Science 359 1489–94

    [44] Gong H S et al 2022 Low-coordinated Co–N–C on oxygenated graphene for efficient electrocatalytic H2O2 production Adv. Funct. Mater. 32 2106886

    [45] Meng R W et al 2021 An oxygenophilic atomic dispersed Fe–N–C catalyst for lean-oxygen seawater batteries Adv. Energy Mater. 11 2100683

    [46] Jia C et al 2021 Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction Adv. Funct. Mater. 31 2107072

    [47] Ye S H et al 2019 Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction Energy Environ. Sci. 12 1000–7

    [48] Noh W Y, Kim E M, Kim K Y, Kim J H, Jeong H Y, Sharma P, Lee G, Jang J W, Joo S H and Lee J S 2020 Immobilizing single atom catalytic sites onto highly reduced carbon hosts: fe–N4/CNT as a durable oxygen reduction catalyst for Na–air batteries J. Mater. Chem. A 8 18891–902

    [49] Li Q D et al 2020 Microwave-enabled incorporation of single atomic Cu catalytic sites in holey graphene: unifying structural requirements of a carbon matrix for simultaneous achievement of high activity and long-term durability ACS Appl. Energy Mater. 3 8266–75

    [50] Fei H L et al 2018 Microwave-assisted rapid synthesis of graphene-supported single atomic metals Adv. Mater. 30 1802146

    [51] Bi Q Y, Yuan X T, Lu Y, Wang D, Huang J, Si R, Sui M L and Huang F Q 2020 One-step high-temperature-synthesized single-atom platinum catalyst for efficient selective hydrogenation Research 2020 9140841

    [52] Jiang D et al 2021 Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation Angew. Chem., Int. Ed. 60 26054–62

    [53] Lu Q, Wu H, Zheng X R, Chen Y N, Rogach A L, Han X P, Deng Y D and Hu W B 2021 Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co–N–C moiety for enhanced oxygen electrocatalysis in Zn-air batteries Adv. Sci. 8 2101438

    [54] Du J Y, Wu G, Liang K, Yang J, Zhang Y D, Lin Y, Zheng X S, Yu Z Q, Wu Y E and Hong X 2021 Rapid controllable synthesis of atomically dispersed Co on carbon under high voltage within one minute Small 17 2007264

    [55] Xi D W et al 2021 Limiting the uncoordinated N species in M–Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range Adv. Mater. 2104090

    [56] Xing L L, Liu R, Gong Z C, Liu J J, Liu J B, Gong H S, Huang K and Fei H L 2021 Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co–N–C single-atom monoliths Nano Res. (https://doi.org/10.1007/s12274-021-4046-z)

    [57] Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y and Shao M F 2022 Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction Small Methods 6 2101324

    [58] Wyss K M, Luong D X and Tour J M 2022 Large-scale syntheses of 2D materials: flash Joule heating and other methods Adv. Mater. 34 2106970

    [59] Yang C P, Yao Y G, He S M, Xie H, Hitz E and Hu L B 2017 Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode Adv. Mater. 29 1702714

    [60] Li Y J et al 2017 In situ, fast, high-temperature synthesis of nickel nanoparticles in reduced graphene oxide matrix Adv. Energy Mater. 7 1601783

    [61] Murakami R K and Villas-Boas V 1999 Nanocrystalline magnetic materials obtained by flash annealing Mater. Res. 2 67–73

    [62] Cologna M, Rashkova B and Raj R 2010 Flash sintering of nanograin zirconia in <5 s at 850 ℃ J. Am. Ceram. Soc. 93 3556–9

    [63] Fujita J I, Nakazawa S, Ichihashi T, Ishida M, Kaito T and Matsui S 2007 Graphitic tube transformation of FIB-CVD pillar by Joule heating with flash discharge Microelectron. Eng. 84 1507–10

    [64] Song X Z, Li N, Zhang H, Wang L, Yan Y J, Wang H, Wang L Y and Bian Z Y 2020 Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production ACS Appl. Mater. Interfaces 12 17519–27

    [65] He X H et al 2020 Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts Cell Rep. Phys. Sci. 1 100004

    [66] Gao J J et al 2020 Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst Chem 6 658–74

    [67] Long G F, Wan K, Liu M Y, Liang Z X, Piao J H and Tsiakaras P 2017 Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction J. Catal. 348 151–9

    [68] Liu Y M, Yu H T, Quan X, Chen S, Zhao H M and Zhang Y B 2014 Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon Sci. Rep. 4 6843

    [69] Jin Q Y, Ren B W, Cui H and Wang C X 2021 Nitrogen and cobalt Co-doped carbon nanotube films as binder-free trifunctional electrode for flexible zinc-air battery and self-powered overall water splitting Appl. Catal. B 283 119643

    [70] Ma T Y, Dai S and Qiao S Z 2016 Self-supported electrocatalysts for advanced energy conversion processes Mater. Today 19 265–73

    [71] Liu R et al 2021 Design of aligned porous carbon films with single-atom Co–N–C sites for high-current-density hydrogen generation Adv. Mater. 33 2103533

    [72] Son H J, Kim M J and Ahn S H 2021 Monolithic Co–N–C membrane integrating Co atoms and clusters as a self-supporting multi-functional electrode for solid-state zinc-air batteries and self-powered water splitting Chem. Eng. J. 414 128739

    [73] Cai G R, Zhang W, Jiao L, Yu S H and Jiang H L 2017 Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting Chem 2 791–802

    [74] Qiao H Y et al 2021 Scalable synthesis of high entropy alloy nanoparticles by microwave heating ACS Nano 15 14928–37

    [75] Xu S M et al 2019 Uniform, scalable, high-temperature microwave shock for nanoparticle synthesis through defect engineering Matter 1 759–69

    [76] Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong H Y, Shin H S and Chhowalla M 2016 High-quality graphene via microwave reduction of solution-exfoliated graphene oxide Science 353 1413–6

    [77] Xu S M et al 2017 Universal, in situ transformation of bulky compounds into nanoscale catalysts by high-temperature pulse Nano Lett. 17 5817–22

    [78] Gong Z C et al 2021 Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction ACS Catal. 11 12284–92

    [79] Liu R Z, Zhang Y, Ning Z J and Xu Y X 2017 A catalytic microwave process for superfast preparation of high-quality reduced graphene oxide Angew. Chem., Int. Ed. 56 15677–82

    [80] Liu Z, Zhang X Y, Poyraz S, Surwade S P and Manohar S K 2010 Oxidative template for conducting polymer nanoclips J. Am. Chem. Soc. 132 13158–9

    [81] Lin Y, Baggett D W, Kim J W, Siochi E J and Connell J W 2011 Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating ACS Appl. Mater. Interfaces 3 1652–64

    [82] Poyraz S, Zhang L, Schroder A and Zhang X Y 2015 Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials ACS Appl. Mater. Interfaces 7 22469–77

    [83] Tian Y R, Yang X, Nautiyal A, Zheng Y Y, Guo Q P, Luo J J and Zhang X Y 2019 One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors Adv. Compos. Hybrid Mater. 2 151–61

    [84] Liu Z et al 2011 Poptube approach for ultrafast carbon nanotube growth Chem. Commun. 47 9912–4

    [85] Zhang X Y and Manohar S K 2006 Microwave synthesis of nanocarbons from conducting polymers Chem. Commun. 23 2477–9

    [86] Bi Y H, Nautiyal A, Zhang H P, Luo J J and Zhang X Y 2018 One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors Electrochim. Acta 260 952–8

    [87] Liu K, Li Z H, Xie W F, Li J B, Rao D M, Shao M F, Zhang B S and Wei M 2018 Oxygen-rich carbon nanotube networks for enhanced lithium metal anode Energy Storage Mater. 15 308–14

    [88] Vander Wal R L, Ticich T M and Curtis V E 2000 Flame synthesis of metal-catalyzed single-wall carbon nanotubes J. Phys. Chem. A 104 7209–17

    [89] Xiong X H, Zhao P, Ren R, Cui X and Ji S D 2019 Flame-synthesis of carbon nanotube forests on metal mesh structure: dependence, morphology, and application Nanomaterials 9 1188

    [90] Han S, Yang J, Li X F, Li W, Zhang X T, Koratkar N and Yu Z Z 2020 Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation ACS Appl. Mater. Interfaces 12 13229–38

    [91] Liu Y J, Li P, Wang F, Fang W Z, Xu Z, Gao W W and Gao C 2019 Rapid roll-to-roll production of graphene films using intensive Joule heating Carbon 155 462–8

    [92] Qiao Y, Chen C J, Liu Y, Liu Y F, Dong Q, Yao Y G, Wang X Z, Shao Y Y, Wang C and Hu L B 2021 Continuous fly-through high-temperature synthesis of nanocatalysts Nano Lett. 21 4517–23

    [93] Xiong G W, Jia J, Zhao L L, Liu X Y, Zhang X L, Liu H and Zhou W J 2021 Non-thermal radiation heating synthesis of nanomaterials Sci. Bull. 66 386–406

    Guanchao He, Minmin Yan, Haisheng Gong, Huilong Fei, Shuangyin Wang. Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 32003
    Download Citation