• Photonics Research
  • Vol. 12, Issue 9, 1991 (2024)
Jing-Zhi Huang1,2, Bo Yang1,2, Jia-Jian Chen1,3, Jia-Le Qin1,2..., Xinlun Cai4, Jie Yan5, Xi Xiao5, Zi-Hao Wang1,2,3,6, Ting Wang1,2,3,* and Jian-Jun Zhang1,2,3|Show fewer author(s)
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 4State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 5National Information Optoelectronics Innovation Center, Wuhan 430074, China
  • 6e-mail: wangzihao@iphy.ac.cn
  • show less
    DOI: 10.1364/PRJ.525382 Cite this Article Set citation alerts
    Jing-Zhi Huang, Bo Yang, Jia-Jian Chen, Jia-Le Qin, Xinlun Cai, Jie Yan, Xi Xiao, Zi-Hao Wang, Ting Wang, Jian-Jun Zhang, "Quantum dot fourth-harmonic colliding pulse mode-locked laser for high-power optical comb generation," Photonics Res. 12, 1991 (2024) Copy Citation Text show less
    References

    [1] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [2] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [3] N. Margalit, C. Xiang, S. M. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [4] D. Liang, J. E. Bowers. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light Adv. Manuf., 2, 59-83(2021).

    [5] D. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [6] R. Wu, V. R. Supradeepa, C. M. Long. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett., 35, 3234-3236(2010).

    [7] S. Liu, K. Wu, L. Zhou. Optical frequency comb and Nyquist pulse generation with integrated silicon modulators. IEEE J. Sel. Top. Quantum Electron., 26, 8300208(2020).

    [8] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [9] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [10] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [11] E. U. Rafailov, M. A. Cataluna, W. Sibbett. Mode-locked quantum-dot lasers. Nat. Photonics, 1, 395-401(2007).

    [12] M. L. Davenport, S. Liu, J. E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon. Res., 6, 468-478(2018).

    [13] L. Hou, Y. Huang, Y. Liu. Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser. Opt. Lett., 45, 2760-2763(2020).

    [14] X. Huang, A. Stintz, H. Li. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett., 78, 2825-2827(2001).

    [15] J. Z. Huang, Z. T. Ji, J. J. Chen. Ultra-broadband flat-top quantum dot comb lasers. Photon. Res., 10, 1308-1316(2022).

    [16] S. Sanders, L. Eng, J. Paslaski. 108 GHz passive mode locking of a multiple quantum well semiconductor laser with an intracavity absorber. Appl. Phys. Lett., 56, 310-311(1990).

    [17] B. Dong, M. Dumont, O. Terra. Broadband quantum-dot frequency-modulated comb laser. Light Sci. Appl., 12, 182(2023).

    [18] Z. H. Wang, W. Q. Wei, Q. Feng. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback. Opt. Express, 29, 674-683(2021).

    [19] S. Liu, X. Wu, D. Jung. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1  Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [20] S. Pan, J. Huang, Z. Zhou. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C. Photon. Res., 8, 1937-1942(2020).

    [21] J. Z. Huang, W. Q. Wei, J. J. Chen. P-doped 1300 nm InAs/GaAs quantum dot lasers directly grown on an SOI substrate. Opt. Lett., 46, 5525-5528(2021).

    [22] J. Huang, W. Wei, B. Yang. Monolithic quantum dot discrete mode laser on SOI. ACS Photon., 10, 1813-1820(2023).

    [23] W. Q. Wei, A. He, B. Yang. Monolithic integration of embedded III-V lasers on SOI. Light Sci. Appl., 12, 84(2023).

    [24] C. Kumar, R. Goyal. Effect of crosstalk in super dense wavelength division multiplexing system using hybrid optical amplifier. J. Opt. Commun., 40, 347-351(2019).

    [25] B. Janjua, M. L. Iu, Z. Leger. Colliding-pulse mode-locking produce 130 fs pulses, enabling record X2 frequency conversion. IEEE Photon. Technol. Lett., 35, 105-108(2023).

    [26] D. Sun, D. Lu, R. Zhang. 100-GHz ultra-short high-peak-power colliding-pulse mode-locked laser with asymmetric coating. Opt. Express, 31, 10533-10540(2023).

    [27] P. Zhao, A. Liu, W. Zheng. 80 GHz AlGaInAs/InP colliding-pulse mode-locked laser with high pulse power. Appl. Phys. Express, 9, 122701(2016).

    [28] S. Liu, M. Sun, H. Wang. Monolithic multi-wavelength colliding pulse mode-locked semiconductor laser. 14th International Conference on Optical Communications and Networks (ICOCN), 1-3(2015).

    [29] C. Xiang, W. Jin, O. Terra. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature, 620, 78-85(2023).

    [30] Z. Yan, Y. Han, L. Lin. A monolithic InP/SOI platform for integrated photonics. Light Sci. Appl., 10, 200(2021).

    [31] L. Carroll, J.-S. Lee, C. Scarcella. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci., 6, 426(2016).

    [32] C. Xiang, W. Jin, D. Huang. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2022).

    [33] J. J. Chen, W. Q. Wei, J. L. Qin. Multi-wavelength injection locked semiconductor comb laser. Photon. Res., 10, 1840-1847(2022).

    [34] S. Pan, H. Zhang, Z. Liu. Multi-wavelength 128 Gbit s−1λ−1 PAM4 optical transmission enabled by a 100 GHz quantum dot mode-locked optical frequency comb. J. Phys. D, 55, 144001(2022).

    [35] A. He, Y. Cui, J. Xiang. Ultra-low loss SiN edge coupler for III-V/SiN hybrid integration. Laser Photon. Rev., 17, 2300100(2023).

    Jing-Zhi Huang, Bo Yang, Jia-Jian Chen, Jia-Le Qin, Xinlun Cai, Jie Yan, Xi Xiao, Zi-Hao Wang, Ting Wang, Jian-Jun Zhang, "Quantum dot fourth-harmonic colliding pulse mode-locked laser for high-power optical comb generation," Photonics Res. 12, 1991 (2024)
    Download Citation