• Acta Photonica Sinica
  • Vol. 47, Issue 7, 714001 (2018)
LIU Qi1、*, ZHANG Nan1, and YANG Jian-jun1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184707.0714001 Cite this Article
    LIU Qi, ZHANG Nan, YANG Jian-jun. Effects of Ambient Air Pressure on Femtosecond Laser Induced Periodic Ripple Structure on Chromium Films[J]. Acta Photonica Sinica, 2018, 47(7): 714001 Copy Citation Text show less
    References

    [1] QIAO Hong-zhen, YANG Jian-jun, WANG Fei, et al. Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces[J]. Optics Express, 2015, 23(20): 26617-26627.

    [2] TONKIKH A A, VOLOSHINA E N, WERNER P. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications[J]. Scientific Reports, 2016, 6: 23547.

    [3] CALDERON M M, RODRIGUEZ A, PONTE A D, et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS[J]. Applied Surface Science, 2016, 374: 81-89.

    [4] BARBERAGLOU M, ZORBA V, PAGOZIDIS A,et al. Electrowetting properties of micro/nanostructured black silicon[J]. Langmuir, 2010, 26(15): 13007-13014.

    [5] YONG Jia-le, CHEN Feng, YANG Qing. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

    [6] KULKARNI M, MAZARE A, GONGADZE E,et al. Titanium nanostructures for biomedical applications[J]. Nanotechnology, 2015, 26(6): 062002.

    [7] QI Li-tao, NISHII K, NAMBAL Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel[J]. Optics Letters, 2009, 34(12): 1846-1848.

    [8] CHEN F, ALDANA J R V D. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser Photonics Review, 2014, 8(2): 251-275.

    [9] KULADEEP R, SAHOO C, RAO D N. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser[J]. Applied Physics Letters, 2014, 104(22): 222103.

    [10] DUFFT D, ROSENFELD A, DAS S K,et al. Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3): 034908.

    [11] HASHIDA M, IKUTA Y, MIYASAKA Y,et al. Simple formula for the interspaces of periodic grating structures self-organized on metal surfaces by femtosecond laser ablation[J]. Applied Physics Letters, 2013, 102(17): 174106.

    [12] BONSE J, KRUGER J, HOHM S,et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 2012, 24(4): 042006.

    [13] YASUMARU N, MIYAZAKI K, KIUCHI J. Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC[J]. Applied Physics A, 2003, 76(6): 983-985.

    [14] SHIMOTSUMA Y, KAZANSKY P G, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

    [15] DERRIEN T J Y, KOTER R, KRUGER J, et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water[J]. Journal of Applied Physics, 2014, 116(7): 074902.

    [16] BESNER S, DEGORCE J Y, KABASHIN A V,et al. Influence of ambient medium on femtosecond laser processing of silicon[J]. Applied Surface Science, 2005, 247(1-4): 163-168.

    [17] PAN Yu-song, YANG Ming, LI Yu-mei, et al. Threshold dependence of deep- and near-subwavelength ripples formation on natural MoS2 induced by femtosecond laser[J]. Scientific Reports, 2016, 6: 19571.

    [18] SHAZIA B, NISAR A, SHAHID R M,et al. Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti[J]. Chinese Physics B, 2016, 25(1): 018101.

    [19] GOLOSOVA E V, EMEL’YANOVB V I, IONINC AA, et al. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. Jetp Letters, 2009, 90(2): 107-110.

    [20] ZHAO Q Z, MALZER S, WANG L J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Optics Letters, 2007, 32(13): 1932-1934.

    [21] HUANG Min, ZHAO Fu-li, CHENG Ya, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. Acs Nano, 2009, 3(12): 4062-4070.

    [22] ARDITO M, BOSCHIS L, PALUMBO R, et al. Fabrication of phase masks, for fiber grating printing, using EBL and CHF3 RIE[J]. Microelectronic Engineering, 1999, 46(1): 251-254.

    [23] LUO Xian-gang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    [24] JIN J S, LEE J S, KWON O. Electron effective mean free path and thermal conductivity predictions of metallic thin films[J]. Applied Physics Letters, 2008, 92(17): 171910.

    [25] ZHU Li-dan, SUN Fang-yuan, ZHU Jie, et al. Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method[J]. Chinese Physics Letters, 2012, 29(6): 066301.

    LIU Qi, ZHANG Nan, YANG Jian-jun. Effects of Ambient Air Pressure on Femtosecond Laser Induced Periodic Ripple Structure on Chromium Films[J]. Acta Photonica Sinica, 2018, 47(7): 714001
    Download Citation