• Photonics Research
  • Vol. 13, Issue 4, 1060 (2025)
Xiaoqiuyan Zhang1,2,3, Sunchao Huang1,2,4,*, Tianyu Zhang1,2,3, Yuxuan Zhuang1,2..., Xingxing Xu1,2, Fu Tang1,2, Zhaoyun Duan1,2, Yanyu Wei1,2, Yubin Gong1,2 and Min Hu1,2,3,5,*|Show fewer author(s)
Author Affiliations
  • 1Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
  • 3Tianfu Jiangxi Laboratory, Chengdu 641419, China
  • 4e-mail: sunchaohuang@uestc.edu.cn
  • 5e-mail: hu_m@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.553780 Cite this Article Set citation alerts
    Xiaoqiuyan Zhang, Sunchao Huang, Tianyu Zhang, Yuxuan Zhuang, Xingxing Xu, Fu Tang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Min Hu, "Reverse Smith-Purcell radiation in photonic crystals," Photonics Res. 13, 1060 (2025) Copy Citation Text show less
    References

    [1] Z. Su, B. Xiong, Y. Xu. Manipulating Cherenkov radiation and Smith–Purcell radiation by artificial structures. Adv. Opt. Mater., 7, 1801666(2019).

    [2] C. Roques-Carmes, S. E. Kooi, Y. Yang. Free-electron–light interactions in nanophotonics. Appl. Phys. Rev., 10, 011303(2023).

    [3] X. Shi, L. W. W. Wong, S. Huang. Transverse recoil imprinted on free-electron radiation. Nat. Commun., 15, 7803(2024).

    [4] G. Rosolen, L. J. Wong, N. Rivera. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl., 7, 64(2018).

    [5] N. Rivera, L. J. Wong, M. Soljačić. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett., 122, 053901(2019).

    [6] F. Liu, L. Xiao, Y. Ye. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics, 11, 289-292(2017).

    [7] Y.-C. Lin, F. Liu, Y.-D. Huang. Cherenkov radiation based on metamaterials. Acta Phys. Sin., 69, 154103(2020).

    [8] T. Qu, F. Liu, Y. Lin. Cherenkov radiation generated in hexagonal boron nitride using extremely low-energy electrons. Nanophotonics, 9, 1491-1499(2020).

    [9] J. Chen, R. Chen, F. Tay. Low-velocity-favored transition radiation. Phys. Rev. Lett., 131, 113002(2023).

    [10] R. Chen, Z. Gong, J. Chen. Recent advances of transition radiation: fundamentals and applications. Mater. Today Electron., 3, 100025(2023).

    [11] T. Zhang, X. Zhang, Z. Zhang. Tunable optical topological transition of Cherenkov radiation. Photon. Res., 10, 1650-1660(2022).

    [12] S. Gong, M. Hu, Z. Wu. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photon. Res., 7, 1154-1160(2019).

    [13] S. J. Smith, E. M. Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

    [14] S. Huang, R. Duan, N. Pramanik. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photonics, 17, 224-230(2023).

    [15] J.-F. Zhu, C.-H. Du, Z.-W. Zhang. Smith–Purcell radiation from helical grating to generate wideband vortex beams. Opt. Lett., 46, 4682-4685(2021).

    [16] Y. Ye, F. Liu, M. Wang. Deep-ultraviolet Smith–Purcell radiation. Optica, 6, 592-597(2019).

    [17] Z. Duan, X. Tang, Z. Wang. Observation of the reversed Cherenkov radiation. Nat. Commun., 8, 14901(2017).

    [18] H. Chen, M. Chen. Flipping photons backward: reversed Cherenkov radiation. Mater. Today, 14, 34-41(2011).

    [19] X. Guo, C. Wu, S. Zhang. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun., 14, 2532(2023).

    [20] H. L. Andrews, C. A. Brau, J. D. Jarvis. Observation of THz evanescent waves in a Smith-Purcell free-electron laser. Phys. Rev. Spec. Top. Accel. Beams, 12, 8-12(2009).

    [21] Y. Song, J. Du, N. Jiang. Efficient terahertz and infrared Smith–Purcell radiation from metal-slot metasurfaces. Opt. Lett., 43, 3858-3861(2018).

    [22] M. J. Moran. X-ray generation by the Smith-Purcell effect. Phys. Rev. Lett., 69, 2523-2526(1992).

    [23] M. Shentcis, A. K. Budniak, X. Shi. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics, 14, 686-692(2020).

    [24] S. Huang, R. Duan, N. Pramanik. Multicolor X-rays from free electron-driven van der Waals heterostructures. Sci. Adv., 9, eadj8584(2023).

    [25] L. J. Wong, I. Kaminer, O. Ilic. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics, 10, 46-52(2016).

    [26] X. Zhang, T. Zhang, Z. Zhang. Electron-beam-driven anomalous Doppler effects in Smith–Purcell radiation. Photon. Res., 12, 78-84(2024).

    [27] A. Massuda, C. Roques-Carmes, Y. Yang. Smith–Purcell radiation from low-energy electrons. ACS Photon., 5, 3513-3518(2018).

    [28] X. Shi, X. Lin, I. Kaminer. Superlight inverse Doppler effect. Nat. Phys., 14, 1001-1005(2018).

    [29] S. E. Korbly, A. S. Kesar, J. R. Sirigiri. Observation of frequency-locked coherent terahertz Smith-Purcell radiation. Phys. Rev. Lett., 94, 054803(2005).

    [30] Z. Zhang, J. Zhu, C. Du. Chiral plasmons enable coherent vortex Smith–Purcell radiation. Laser Photon. Rev., 17, 2200420(2023).

    [31] H. L. Andrews, C. A. Brau. Gain of a Smith-Purcell free-electron laser. Phys. Rev. Spec. Top. Accel. Beams, 7, 22-28(2004).

    [32] D. Li, Y. Wang, M. Nakajima. Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate. Appl. Phys. Lett., 110, 151108(2017).

    [33] J. Urata, M. Goldstein, M. F. Kimmitt. Superradiant Smith-Purcell emission. Phys. Rev. Lett., 80, 516-519(1998).

    [34] V. L. Bratman, A. E. Fedotov, P. B. Makhalov. Experimental demonstration of Smith-Purcell radiation enhancement by frequency multiplication in open cavity. Appl. Phys. Lett., 98(2011).

    [35] L. Jing, X. Lin, Z. Wang. Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces. Laser Photon. Rev., 15, 2000426(2021).

    [36] W. Li, W. Liu, Q. Jia. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating. AIP Adv., 6, 035202(2016).

    [37] N. Yamamoto, F. Javier García de Abajo, V. Myroshnychenko. Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Phys. Rev. B, 91, 125144(2015).

    [38] T. Ochiai, K. Ohtaka. Electron energy loss and Smith-Purcell radiation in two- and three-dimensional photonic crystals. Opt. Express, 13, 7683-7698(2005).

    [39] V. G. Baryshevsky, A. A. Gurinovich. Spontaneous and induced parametric and Smith–Purcell radiation from electrons moving in a photonic crystal built from the metallic threads. Nucl. Instrum. Methods Phys. Res. B, 252, 92-101(2006).

    [40] Z. Wang, K. Yao, M. Chen. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys. Rev. Lett., 117, 157401(2016).

    [41] Z. Su, F. Cheng, L. Li. Complete control of Smith-Purcell radiation by graphene metasurfaces. ACS Photon., 6, 1947-1954(2019).

    [42] S. Chen, P. Wang, Y. Wang. Investigation of the Abraham–Minkowski dilemma in Smith–Purcell radiation from photonic crystals. APL Photon., 9, 096116(2024).

    [43] I. Kaminer, S. Kooi, R. Shiloh. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X, 7, 011003(2017).

    [44] Z. Zhang, C. Du, J. Zhu. Free-electron-driven frequency comb. Laser Photon. Rev., 17, 2200886(2023).

    [45] P. V. Parimi, W. T. Lu, P. Vodo. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett., 92, 127401(2004).

    [46] A. Berrier, M. Mulot, M. Swillo. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett., 93, 073902(2004).

    [47] S. Foteinopoulou, C. M. Soukoulis. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B, 67, 235107(2003).

    [48] R. Gajić, R. Meisels, F. Kuchar. All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals. Phys. Rev. B, 73, 165310(2006).

    [49] C. Luo, S. G. Johnson, J. D. Joannopoulos. All-angle negative refraction without negative effective index. Physical Rev. B, 65, 201104(2002).

    [50] C. Luo, M. Ibanescu, S. G. Johnson. Cerenkov radiation in photonic crystals. Science, 299, 368-371(2003).

    [51] X. Zhang, M. Hu, Z. Zhang. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band. Carbon, 183, 225-231(2021).

    [52] J. Chen, Y. Wang, B. Jia. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat. Photonics, 5, 239-242(2011).

    [53] E. J. Reed, M. Soljačić, J. D. Joannopoulos. Reversed Doppler effect in photonic crystals. Phys. Rev. Lett., 91, 133901(2003).

    [54] X. Huang, Y. Lai, Z. H. Hang. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater., 10, 582-586(2011).

    [55] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B, 62, 10696-10705(2000).

    [56] K. Mizuno, J. Pae, T. Nozokido. Experimental evidence of the inverse Smith–Purcell effect. Nature, 328, 45-47(1987).

    [57] C. Roques-Carmes, N. Rivera, A. Ghorashi. A framework for scintillation in nanophotonics. Science, 375, eabm9293(2022).

    [58] W. Ye, Z. Yong, M. Go. The nanoplasmonic Purcell effect in ultrafast and high-light-yield perovskite scintillators. Adv. Mater., 36, 2309410(2024).

    [59] Y. Yang, A. Massuda, C. Roques-Carmes. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys., 14, 894-899(2018).

    [60] S. Shi, C. Chen, D. W. Prather. Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J. Opt. Soc. Am. A, 21, 1769-1775(2004).

    [61] S. Yamaguti, J. I. Inoue, O. Haeberlé. Photonic crystals versus diffraction gratings in Smith-Purcell radiation. Phys. Rev. B, 66, 195202(2002).

    Xiaoqiuyan Zhang, Sunchao Huang, Tianyu Zhang, Yuxuan Zhuang, Xingxing Xu, Fu Tang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Min Hu, "Reverse Smith-Purcell radiation in photonic crystals," Photonics Res. 13, 1060 (2025)
    Download Citation