• Photonics Research
  • Vol. 12, Issue 9, 2012 (2024)
Xiong Qin1,†, Daping Luo1,†, Lian Zhou1,2,*, Jiayi Pan1..., Zejiang Deng1, Gehui Xie1, Chenglin Gu1 and Wenxue Li1,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2e-mail: lzhou@lps.ecnu.edu.cn
  • 3e-mail: wxli@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.528880 Cite this Article Set citation alerts
    Xiong Qin, Daping Luo, Lian Zhou, Jiayi Pan, Zejiang Deng, Gehui Xie, Chenglin Gu, Wenxue Li, "Frequency comb generation from the ultraviolet to mid-infrared region based on a three-stage cascaded PPLN chain," Photonics Res. 12, 2012 (2024) Copy Citation Text show less
    References

    [1] T. Ideguchi, S. Holzner, B. Bernhardt. Coherent Raman spectro-imaging with laser frequency combs. Nature, 502, 355-358(2013).

    [2] B. Lomsadze, S. T. Cundiff. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science, 357, 1389-1391(2017).

    [3] B. Lomsadze, B. C. Smith, S. T. Cundiff. Tri-comb spectroscopy. Nat. Photonics, 12, 676-680(2018).

    [4] D. Peng, C. Gu, Z. Zuo. Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field. Nat. Commun., 14, 883(2023).

    [5] H. Timmers, A. Kowligy, A. Lind. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    [6] A. V. Muraviev, V. O. Smolski, Z. E. Loparo. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).

    [7] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [8] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [9] D. A. Long, M. J. Cich, C. Mathurin. Nanosecond time-resolved dual-comb absorption spectroscopy. Nat. Photonics, 18, 127-131(2024).

    [10] U. Elu, L. Maidment, L. Vamos. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photonics, 15, 277-280(2021).

    [11] X. Liu, A. W. Bruch, J. Lu. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nat. Commun., 10, 2971(2019).

    [12] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [13] P. St.J. Russell, P. Hölzer, W. Chang. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics, 8, 278-286(2014).

    [14] F. Köttig, F. Tani, C. M. Biersach. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica, 4, 1272-1276(2017).

    [15] J. C. Travers, T. F. Grigorova, C. Brahms. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics, 13, 547-554(2019).

    [16] X. Jiang, N. Y. Joly, M. A. Finger. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics, 9, 133-139(2015).

    [17] N. Singh, H. M. Mbonde, H. C. Frankis. Nonlinear silicon photonics on CMOS-compatible tellurium oxide. Photonics Res., 8, 1904-1909(2020).

    [18] D. D. Hickstein, G. C. Kerber, D. R. Carlson. Quasi-phase-matched supercontinuum generation in photonic waveguides. Phys. Rev. Lett., 120, 053903(2018).

    [19] A. Roy, L. Ledezma, L. Costa. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun., 14, 6549(2023).

    [20] D. D. Hickstein, D. R. Carlson, A. Kowligy. High-harmonic generation in periodically poled waveguides. Optica, 4, 1538-1544(2017).

    [21] D. M. B. Lesko, H. Timmers, S. Xing. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photonics, 15, 281-286(2021).

    [22] J. Rutledge, A. Catanese, D. D. Hickstein. Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides. J. Opt. Soc. Am. B, 38, 2252-2260(2021).

    [23] L. Hong, L. Liu, Y. Liu. Intense ultraviolet–visible–infrared full-spectrum laser. Light Sci. Appl., 12, 199(2023).

    [24] T.-H. Wu, L. Ledezma, C. Fredrick. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photonics, 18, 218-223(2024).

    [25] I. Shoji, T. Kondo, A. Kitamoto. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 14, 2268-2294(1997).

    [26] L. Chang, A. Boes, X. Guo. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photonics Rev., 12, 1800149(2018).

    [27] D. J. Wilson, K. Schneider, S. Hönl. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [28] A. J. Lind, A. Kowligy, H. Timmers. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics. Phys. Rev. Lett., 124, 133904(2020).

    [29] N. Hoghooghi, S. Xing, P. Chang. Broadband 1-GHz mid-infrared frequency comb. Light Sci. Appl., 11, 264(2022).

    [30] N. Jornod, M. Jankowski, L. M. Krüger. Monolithically integrated femtosecond optical parametric oscillators. Optica, 10, 826-831(2023).

    [31] Z. Hao, J. Wang, S. Ma. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res., 5, 623-628(2017).

    [32] B.-Q. Chen, C. Zhang, C.-Y. Hu. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett., 115, 083902(2015).

    [33] Y. Di, Z. Zuo, D. Peng. Dual-comb spectroscopy from the ultraviolet to mid-infrared region based on high-order harmonic generation. Photonics Res., 11, 1373-1381(2023).

    [34] T. Puppe, A. Sell, R. Kliese. Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency. Opt. Lett., 41, 1877-1880(2016).

    [35] L. Zhou, X. Qin, Y. Di. Frequency comb with a spectral range of 0.4–5.2 μm based on a compact all-fiber laser and LiNbO3 waveguide. Opt. Lett., 48, 4673-4676(2023).

    [36] S. Okubo, A. Onae, K. Nakamura. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica, 5, 188-192(2018).

    [37] C. Gu, Z. Zuo, D. Luo. High-repetition-rate femtosecond mid-infrared pulses generated by nonlinear optical modulation of continuous-wave QCLs and ICLs. Opt. Lett., 44, 5848-5851(2019).

    [38] M. Conforti, F. Baronio, C. De Angelis. Ultrabroadband optical phenomena in quadratic nonlinear media. IEEE Photonics J., 2, 600-610(2010).

    [39] M. Conforti, F. Baronio, C. De Angelis. Nonlinear envelope equation for broadband optical pulses in quadratic media. Phys. Rev. A, 81, 053841(2010).

    [40] Y. Li, X. Zhang. Self-phase modulation in nonlinear 2-D plasma waveguides. Opt. Commun., 282, 4303-4307(2009).

    [41] Y. Zhang, J. Wu, Y. Yang. Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films. IEEE J. Sel. Top. Quantum Electron., 29, 5100413(2022).

    Xiong Qin, Daping Luo, Lian Zhou, Jiayi Pan, Zejiang Deng, Gehui Xie, Chenglin Gu, Wenxue Li, "Frequency comb generation from the ultraviolet to mid-infrared region based on a three-stage cascaded PPLN chain," Photonics Res. 12, 2012 (2024)
    Download Citation