• Acta Photonica Sinica
  • Vol. 48, Issue 10, 1030002 (2019)
GUO Kai-chen1、2、*, WU Zhong-chen1、2, ZHU Xiang-ping3, LING Zong-cheng1、2, ZHANG Jiang1、2, LI Yun1、2, and QIAN Mao-cheng1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194810.1030002 Cite this Article
    GUO Kai-chen, WU Zhong-chen, ZHU Xiang-ping, LING Zong-cheng, ZHANG Jiang, LI Yun, QIAN Mao-cheng. Mineral Element Abundance Identification Based on LIBS Emission Line Selection by Loading Space Distance of Principal Component Analysis[J]. Acta Photonica Sinica, 2019, 48(10): 1030002 Copy Citation Text show less
    References

    [1] WIENS R C, MAURICE S, BARRACLOUGH B, et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: body unit and combined system tests[J]. Space Science Reviews, 2012, 170: 167-227.

    [2] SAUTTER V, TOPLIS M J, WIENS R C, et al. In situ evidence for continental crust on early Mars[J]. Nature Geoscience, 2015, 8: 605-609.

    [3] MAURICE S, CLEGG S M, WIENS R C, et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 863-889.

    [4] NACHON M, MANGOLD N, FORNI O, et al. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars[J]. Icarus, 2017, 281: 121-136.

    [5] WILLIAMS R M, GROTZINGER J P, DIETRICH W E, et al. Martian fluvial conglomerates at Gale crater[J]. Science, 2013, 340: 1068-1072.

    [6] BLANEY G B D, BRIDGES J, COUSIN A, et al. Possible alteration of rocks observed by Chemcam along the traverse to Glenelg in Gale crater on Mars[C]. EGU2013, 2013: 1502.

    [7] CLEGG S M, MANGOLD N, LE MOULIC S, et al. High calcium phase observations at rocknest with ChemCam[C]. The Woodlands, Texas: 44th Lunar and Planetary Science Conference, 2013: 2087.

    [8] YE Pei-jian, SUN Ze-zhou, RAO Wei, et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences, 2017, 60: 649-657.

    [9] LEFEBVRE C, CATALA-ESPI A, SOBRON P, et al. Depth-resolved chemical mapping of rock coatings using Laser-Induced Breakdown Spectroscopy: Implications for geochemical investigations on Mars[J]. Planetary and Space Science, 2016, 126: 24-33.

    [10] MAURICE S, WIENS R, MSL SCIENCE TEAM. Overview of 100 sols of Chemcam operations at gale crater[C]. EGU2013, 2013: 14161.

    [11] ANDERSON R B, CLEGG S M, FRYDENVANG J, et al. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 129: 49-57.

    [12] RODARMEL C, SHAN J. Principal component analysis for hyperspectral image classification[J]. Surveying and Land Information Science, 2002, 62(2): 115-122.

    [13] WANG Qian-qian, HUANG Zhi-wen. Classification and identification of plastics laser-induced breakdown spectrum based on principal component analysis and artificial neural network[J]. Spectroscopy and Spectral Analysis, 2012, 32: 3179-3182.

    [14] WANG Qian-qian, TENG G, QIAO Xiao-lei, et al. Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria[J]. Biomedical Optics Express, 2018, 9: 5837-5850.

    [15] CLEGG S M, SKLUTE E, DYAR M D, et al. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1): 79-88.

    [16] WIENS R C, MAURICE S, LASUE J, et al. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 1-27.

    [17] MCSWEEN H Y. Petrology on Mars[J]. American Mineralogist, 2015, 100(11-12): 2380-2395.

    [18] SHI Qi, NIU Guang-hui, LIN Qing-yu, et al. Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: comparison of support vector regression and partial least squares regression chemometric methods[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 2384-2393.

    [19] MCSWEEN H Y. SNC meteorites: are they Martian rocks [J].Journal of Geology, 1984, 12(1): 3-6.

    [20] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.

    [21] GOLUB GENE H. (GENE HOWARD) matrix computations[B]. Johns Hopkins University Press, 1996.

    [22] VETTERLING W T, PRESS W H, TEUKOLSKY S A, et al. Numerical recipes example book (C++): the art of scientific computing[M]. Cambridge University Press, 2002.

    [23] ABDI H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)[J]. Encyclopedia of Measurement and Statistics, 2007, 907-912.

    [24] LI Bo-yan, HU Yun, Liang yi-zeng, et al. Quality evaluation of fingerprints of herbal medicine with chromatographic data[J]. Analytica Chimica Acta, 2004, 514: 69-77.

    [25] OUYANG Zi-yuan, ZOU Yong-liao. Introduction to Mars science[M]. ShangHai: Shanghai Science and Technology Education Press, 2017.

    [26] YEN A S, GELLERT R, CLARK B C, et al. Evidence for a global martian soil composition extends to Gale Crater[C]. 44th Lunar and Planetary Science Conference, 2013: 2495.

    [27] BLAKE D F, MORRIS R V, KOCUREK G, et al. Curiosity at gale crater, Mars: characterization and analysis of the rocknest sand shadow[J]. Science, 2013, 341(6153): 1239505.

    [28] TAYLOR S R, MCLENNAN S. Planetary crusts: their composition, origin and evolution[M]. Cambridge University Press, 2009.

    [29] OLSEN A K, RALCHENKO Y. NIST LIBS Database: NIST 2017[DB/OL][2019-05-09]. https://physics. nist. gov/PhysRefData/ASD/LIBS/libs-form.html.

    [30] COUSIN A, SAUTTER V, PAYR V, et al. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars[J]. Icarus, 2017, 288: 265-283.

    [31] UNNIKRISHNAN V K, CHOUDHARI K S, KULKARNI S D, et al. Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification[J]. RSC Advances, 2013, 3(48): 25872-25880.

    GUO Kai-chen, WU Zhong-chen, ZHU Xiang-ping, LING Zong-cheng, ZHANG Jiang, LI Yun, QIAN Mao-cheng. Mineral Element Abundance Identification Based on LIBS Emission Line Selection by Loading Space Distance of Principal Component Analysis[J]. Acta Photonica Sinica, 2019, 48(10): 1030002
    Download Citation