• Optics and Precision Engineering
  • Vol. 31, Issue 9, 1366 (2023)
Daxiang LI, Zhongheng SU*, and Ying LIU
Author Affiliations
  • College of Communication and Information Engineering, Xi'an University of Posts and Telecommunication, Xi'an710121, China
  • show less
    DOI: 10.37188/OPE.20233109.1366 Cite this Article
    Daxiang LI, Zhongheng SU, Ying LIU. Road traffic sign recognition algorithm based on improved YOLOv4[J]. Optics and Precision Engineering, 2023, 31(9): 1366 Copy Citation Text show less
    Network structure of YOLOv4
    Fig. 1. Network structure of YOLOv4
    Flow chart of YOLOv4 object recognition
    Fig. 2. Flow chart of YOLOv4 object recognition
    Network structure of improved YOLOv4
    Fig. 3. Network structure of improved YOLOv4
    Attention-driven scale-aware module
    Fig. 4. Attention-driven scale-aware module
    Feature-aligned pyramid convolution module
    Fig. 5. Feature-aligned pyramid convolution module
    Feature-aligned module
    Fig. 6. Feature-aligned module
    Size distribution of traffic signs from TT100K
    Fig. 7. Size distribution of traffic signs from TT100K
    Recognition results of improved YOLOv4 and original YOLOv4
    Fig. 8. Recognition results of improved YOLOv4 and original YOLOv4
    类别名称型号和参数

    硬件

    中央处理器Intel(R)Core(TM) Xeon E5-2640
    内存128GB
    图像处理器NVIDIA Titan X(12G)

    软件

    操作系统Ubuntu 18.04
    深度学习框架Pytorch-cuda 1.7.0
    开发语言Python 3.8.0
    环境管理Anaconda 3.6.5
    Table 1. Experimental software and hardware configuration
    Feature mapReceptive fieldAnchor box
    19×19Large

    (74,80)

    (94,100)

    (140,146)

    38×38Medium

    (37,40)

    (46,52)

    (58,63)

    76×76Small

    (14,18)

    (22,24)

    (28,32)

    Table 2. Anchor size generated by K-means++ algorithm
    MethodsSmallMediumLargeOverall
    PRFPRFPRFPRF
    Zhu et al.3281.787.484.590.893.692.290.687.789.187.789.688.6
    Faster R-CNN3325.258.235.263.883.772.480.791.285.656.777.665.5
    YOLOv42083.087.585.291.395.293.290.688.289.488.390.389.3
    FAMN3488.490.189.294.297.295.792.896.194.491.894.393.0
    DR-CNN3583.189.386.191.794.893.292.489.691.089.091.290.1
    Noh et al.[36]84.892.688.594.297.595.893.397.595.490.695.793.1
    Wang et al.[37]87.389.488.392.596.494.492.890.591.690.892.391.5
    TsingNet1589.090.689.895.295.695.496.292.894.593.492.993.1
    Ours89.492.390.895.596.896.196.497.496.993.794.594.1
    Table 3. Performance comparison of different methods on TT100K dataset
    MethodsADSAFAPCPsPmPlPallFPS
    YOLOv4 baseline--83.091.390.688.341.36
    -87.392.793.491.237.74
    -86.693.894.591.638.32
    Ours89.495.596.493.733.17
    Table 4. Ablation experiment data
    Daxiang LI, Zhongheng SU, Ying LIU. Road traffic sign recognition algorithm based on improved YOLOv4[J]. Optics and Precision Engineering, 2023, 31(9): 1366
    Download Citation