• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 7, 2396 (2024)
SHEN Ding*, ZHAO Shiyu, FU Xiaofan, YU Haoran..., JI Yanzhen and DONG Wei|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230976 Cite this Article
    SHEN Ding, ZHAO Shiyu, FU Xiaofan, YU Haoran, JI Yanzhen, DONG Wei. Research Progress on Electrospinning Technology in Negative Electrode Materials for Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2396 Copy Citation Text show less
    References

    [1] GUO Y J, WANG X Y, SHEN Y, et al. Research progress, models and simulation of electrospinning technology: A review[J]. J Mater Sci, 2022, 57(1): 58-104.

    [2] LIU Y S, WANG L C, LI D Z, et al. State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: A review[J]. Prot Contr Mod Power Syst, 2023, 8(3): 1-17.

    [3] SUN X W, ZHANG Y, ZHANG Y C, et al. Summary of health-state estimation of lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Energies, 2023, 16(15): 5682.

    [4] ZHANG M, LIU Y S, LI D Z, et al. Electrochemical impedance spectroscopy: A new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries[J]. Energies, 2023, 16(4): 1599.

    [5] AN Liyi, WANG Guodong, WU Qi. Mar Electr Electron Eng, 2023, 43(9): 35-38.

    [6] ZHAO Y, YAN J H, YU J Y, et al. Electrospun nanofiber electrodes for lithium-ion batteries[J]. Macromol Rapid Commun, 2023, 44(4): e2200740.

    [7] LIU J H, WANG P, GAO Z H, et al. Review on electrospinning anode and separators for lithium ion batteries[J]. Renew Sustain Energy Rev, 2024, 189: 113939.

    [8] LUKá? D, SARKAR A, MARTINOVá L, et al. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century)[J]. Text Prog, 2009, 41(2): 59-140.

    [9] ANGEL N, GUO L P, YAN F, et al. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology[J]. J Agric Food Res, 2020, 2: 100015.

    [10] LI Z, WANG C. One Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers[M]. ?Heidelberg: Springer, 2013: 145.

    [11] TANG Fengcheng, LI Jinchao, ZHANG Wei, et al. J Text Sci Eng, 2022, 39(1): 68-71.

    [12] JOSHI B, SAMUEL E, KIM Y I, et al. Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes[J]. Chem Eng J, 2022, 430: 132876.

    [13] LIU Q, ZHU J H, ZHANG L W, et al. Recent advances in energy materials by electrospinning[J]. Renew Sustain Energy Rev, 2018, 81: 1825-1858.

    [14] MAO X W, HATTON T, RUTLEDGE G. A review of electrospun carbon fibers as electrode materials for energy storage[J]. Curr Org Chem, 2013, 17(13): 1390-1401.

    [15] JUN Z, HOU H Q, SCHAPER A, et al. Poly-L-lactide nanofibers by electrospinning-Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology[J]. e-Polymers, 2003, 3(1): 009.

    [16] ZAFAR M, NAJEEB S, KHURSHID Z, et al. Potential of electrospun nanofibers for biomedical and dental applications[J]. Materials, 2016, 9(2): 73.

    [17] ZUO W W, ZHU M F, YANG W, et al. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning[J]. Polym Eng Sci, 2005, 45(5): 704-709.

    [18] ZHANG J H, LI L L, CHEN J Q, et al. Controllable SnO2/ZnO@PPy hollow nanotubes prepared by electrospinning technology used as anode for lithium ion battery[J]. J Phys Chem Solids, 2021, 150: 109861.

    [19] CROCE F, FOCARETE M L, HASSOUN J, et al. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J]. Energy Environ Sci, 2011, 4(3): 921-927.

    [20] WANG J, WANG Z Z, NI J F, et al. Electrospun materials for batteries moving beyond lithium-ion technologies[J]. Electrochem Energy Rev, 2022, 5(2): 211-241.

    [21] REN L F, XIA F, SHAO J H, et al. Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation[J]. Desalination, 2017, 404: 155-166.

    [22] ZARGHAM S, BAZGIR S, TAVAKOLI A, et al. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber[J]. J Eng Fibres Fabr, 2012, 7(4): 155892501200700.

    [23] ANGAMMANA C J, JAYARAM S H. Fundamentals of electrospinning and processing technologies[J]. Part Sci Technol, 2016, 34(1): 72-82.

    [24] HUAN S Q, LIU G X, HAN G P, et al. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers[J]. Materials, 2015, 8(5): 2718-2734.

    [25] HUANG X X, JIAO T F, LIU Q Q, et al. Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture[J]. Sci China Mater, 2019, 62(3): 423-436.

    [26] PELIPENKO J, KRISTL J, JANKOVI? B, et al. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers[J]. Int J Pharm, 2013, 456(1): 125-134.

    [27] RAO X F, LOU Y T, ZHAO J J, et al. Carbon nanofibers derived from carbonization of electrospinning polyacrylonitrile (PAN) as high performance anode material for lithium ion batteries[J]. J Porous Mater, 2023, 30(2): 403-419.

    [28] TIAN H F, YUAN L, WANG J G, et al. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals[J]. J Hazard Mater, 2019, 378: 120751.

    [29] ELKASABY M, HEGAB H A, MOHANY A, et al. Modeling and optimization of electrospinning of polyvinyl alcohol (PVA)[J]. Adv Polym Technol, 2018, 37(6): 2114-2122.

    [30] CUI Z X, ZHENG Z F, LIN L Y, et al. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery[J]. Adv Polym Technol, 2018, 37(6): 1917-1928.

    [31] ZHANG W P, HAO P F, LEI L R, et al. Great potentials of lignin-based separator for Li-ion battery with electrospinning in aqueous system[J]. Nord Pulp Pap Res J, 2023, 38(4): 607-617.

    [32] KEIROUZ A, FORTUNATO G, ZHANG M, et al. Nozzle-free electrospinning of polyvinylpyrrolidone/poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications[J]. Med Eng Phys, 2019, 71: 56-67.

    [33] AKHOUY G, AZIZ K, GEBRATI L, et al. Recent applications on biopolymers electrospinning: Strategies, challenges and way forwards[J]. Polym Plast Technol Mater, 2023, 62(13): 1754-1775.

    [34] BAKAR S S, FONG K C, ELEYAS A, et al. Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers[J]. IOP Conf Ser: Mater Sci Eng, 2018, 318: 012076.

    [35] KARKI H P, KAFLE L, OJHA D P, et al. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition[J]. Sep Purif Technol, 2019, 210: 913-919.

    [36] TANG Y, LI Z, LIANG G W, et al. Enhancement of luminous efficacy for LED lamps by introducing polyacrylonitrile electrospinning nanofiber film[J]. Opt Express, 2018, 26(21): 27716-27725.

    [37] ARUNKUMAR R, THAMAYANTHI P, RAMASWAMY M, et al. Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries[J]. Energy, 2023, 263(PE): 126058.

    [38] SONMEZ BAGHIRZADE B, BISWAS P, MOAVENZADEH GHAZNAVI S, et al. Accessibility of adsorption sites for superfine powdered activated carbons incorporated into electrospun polystyrene fibers[J]. Chem Eng J, 2023, 461: 142009.

    [39] LIU Y W, WANG S Y, LAN W J, et al. Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation[J]. Int J Biol Macromol, 2019, 121: 1329-1336.

    [40] OKUTAN N, TERZI P, ALTAY F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers[J]. Food Hydrocoll, 2014, 39: 19-26.

    [41] WANG Yuanming, SHI Xinran, ZHANG Xin, et al. Polym Bull, 2023, 36(12): 1634-1645.

    [42] PENG Y T, LO C T. Electrospun porous carbon nanofibers as lithium ion battery anodes[J]. J Solid State Electrochem, 2015, 19(11): 3401-3410.

    [43] GUO J P, DONG D Q, WANG J, et al. Silicon-based lithium ion battery systems: State-of-the-art from half and full cell viewpoint[J]. Adv Funct Materials, 2021, 31(34): 2102546.

    [44] WU J K, MA F, LIU X R, et al. Recent progress in advanced characterization methods for silicon-based lithium-ion batteries[J]. Small Meth, 2019, 3(10): 1900158.

    [45] CHEN Y L, HU Y, SHEN Z, et al. Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries[J]. J Power Sources, 2017, 342: 467-475.

    [46] QU E L, CHEN T, XIAO Q Z, et al. Flexible freestanding 3D Si/C composite nanofiber film fabricated using the electrospinning technique for lithium-ion batteries anode[J]. Solid State Ion, 2019, 337: 70-75.

    [47] LIU X, WU X Y, CHANG B B, et al. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms[J]. Energy Storage Mater, 2020, 30: 146-169.

    [48] LI W H, LI M S, YANG Z Z, et al. Carbon-coated germanium nanowires on carbon nanofibers as self-supported electrodes for flexible lithium-ion batteries[J]. Small, 2015, 11(23): 2762-2767.

    [49] YANG Z Z, GEWIRTH A A, TRAHEY L. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes[J]. ACS Appl Mater Interfaces, 2015, 7(12): 6557-6566.

    [50] YANG M, LIU L, YAN H X, et al. Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries[J]. Appl Surf Sci, 2021, 551: 149246.

    [51] SELF E C, WYCISK R, PINTAURO P N. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes[J]. J Power Sources, 2015, 282: 187-193.

    [52] OH S I, KIM J C, AHMAD DAR M, et al. Synthesis and characterization of uniform hollow TiO2 nanofibers using electrospun fibrous cellulosic templates for lithium-ion battery electrodes[J]. J Alloys Compd, 2019, 800: 483-489.

    [53] GAO Y J, YIN L H, KIM S J, et al. Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery[J]. Electrochim Acta, 2019, 296: 565-574.

    [54] WU L C, WU T, MAO M L, et al. Electrospinning synthesis of Ni°, Fe° codoped ultrafine-ZnFe2O4/C nanofibers and their properties for lithium ion storage[J]. Electrochim Acta, 2016, 194: 357-366.

    [55] WANG H, LI S F, YANG Y, et al. Electrochemical characteristics of Li4Ti5O12/Ag composite nanobelts prepared via electrospinning[J]. Russ J Phys Chem A, 2019, 93(1): 144-150.

    [56] ZHANG Z B, DENG X, SUNARSO J, et al. Two-step fabrication of Li4Ti5O12-coated carbon nanofibers as a flexible film electrode for high-power lithium-ion batteries[J]. ChemElectroChem, 2017, 4(9): 2286-2292.

    [57] YANG Y, YUE Y, WANG L, et al. Facile synthesis of mesoporous TiNb2O7/C microspheres as long-life and high-power anodes for lithium-ion batteries[J]. Int J Hydrog Energy, 2020, 45(22): 12583-12592.

    [58] SHENG S X, GAO H Y, LIU X L, et al. Rational fabrication and improved lithium ion battery performances of carbon nanofibers incorporated with α-Fe2O3 hollow nanoballs[J]. Surf Interfaces, 2020, 21: 100612.

    [59] PARK S H, LEE W J. Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell-core structure as anodes for lithium ion batteries[J]. Carbon, 2015, 89: 197-207.

    [60] YANG Q, FENG C Q, LIU J W, et al. Synthesis of porous Co3O4/C nanoparticles as anode for Li-ion battery application[J]. Appl Surf Sci, 2018, 443: 401-406.

    [61] FAN L, ZHANG W D, ZHU S P, et al. Enhanced lithium storage capability in Li-ion batteries using porous 3D Co3O4 nanofiber anodes[J]. Ind Eng Chem Res, 2017, 56(8): 2046-2053.

    [62] WANG J G, YANG Y, HUANG Z H, et al. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries[J]. Electrochim Acta, 2015, 170: 164-170.

    [63] OH J H, SU JO M, JEONG S M, et al. New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries[J]. J Ind Eng Chem, 2019, 77: 76-82.

    [64] CHEN Z, YANG T, SHI H M, et al. Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage[J]. Adv Materials Inter, 2017, 4(3): 1600816.

    [65] CHERIAN C T, SUNDARAMURTHY J, KALAIVANI M, et al. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries[J]. J Mater Chem, 2012, 22(24): 12198.

    [66] CHENG W J, FENG Q, WANG X, et al. In situ topotactic preparation of porous plate-like Li2ZnTi3O8 as the lithium-ion batteries anode for enhancing electrochemical reaction kinetics and Li+ storage[J]. Electrochim Acta, 2023, 440: 141758.

    [67] PARK J S, OH Y J, KIM J H, et al. Porous nanofibers comprised of hollow SnO2 nanoplate building blocks for high-performance lithium ion battery anode[J]. Mater Charact, 2020, 161: 110099.

    [68] LOU L Z, KONG X Z, ZHU T, et al. Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries[J]. Sci China Mater, 2019, 62(4): 465-473.

    [69] LI Z, ZHANG J W, YU L G, et al. Electrospun porous nanofibers for electrochemical energy storage[J]. J Mater Sci, 2017, 52(11): 6173-6195.

    [70] PARK S H, LEE W J. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries[J]. Sci Rep, 2015, 5: 9754.

    [71] TANG H, JIANG M J, BAI W H, et al. Electrospinning-derived ZnCo2O4@carbon nanofiber composite for high-performance lithium ion storage[J]. Ceram Int, 2023, 49(10): 15793-15801.

    [72] LI X, YANG K, GAO F, et al. Electrospinning synthesis of spinel Li4Ti5O12 and its characterization[J]. IOP Conf Ser: Mater Sci Eng, 2015, 87: 012098.

    [73] WAN Y Z, YANG Z W, XIONG G Y, et al. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries[J]. J Power Sources, 2015, 294: 414-419.

    [74] WU S H, HAN Y D, WEN K C, et al. Composite nanofibers through in situ reduction with abundant active sites as flexible and stable anode for lithium ion batteries[J]. Compos Part B Eng, 2019, 161: 369-375.

    [75] CAO B K, LIU Z Q, XU C Y, et al. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries[J]. J Power Sources, 2019, 414: 233-241.

    [76] JOSHI B N, AN S, JO H S, et al. Flexible, freestanding, and binder-free SnOx-ZnO/carbon nanofiber composites for lithium ion battery anodes[J]. ACS Appl Mater Interfaces, 2016, 8(14): 9446-9453.

    [77] WANG L, YU Y, CHEN P C, et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries[J]. J Power Sources, 2008, 183(2): 717-723.

    [78] YANG Z X, MENG Q, GUO Z P, et al. Highly reversible lithium storage in uniform Li4Ti5O12/carbon hybrid nanowebs asanode material for lithium-ion batteries[J]. Energy, 2013, 55: 925-932.

    [79] AGUBRA V A, ZUNIGA L, FLORES D, et al. A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries[J]. Electrochim Acta, 2017, 224: 608-621.

    [80] NARSIMULU D, VADNALA S, SRINADHU E S, et al. Electrospun Sn-SnO2/C composite nanofibers as an anode material for lithium battery applications[J]. J Mater Sci Mater Electron, 2018, 29(13): 11117-11123.

    [81] LING J, KARUPPIAH C, REDDY M V, et al. Unraveling synergistic mixing of SnO2-TiO2 composite as anode for Li-ion battery and their electrochemical properties[J]. J Mater Res, 2021, 36(20): 4120-4130.

    [82] DAI H Y, ZHANG R, ZHONG M, et al. Effects of the inherent tubular structure and graphene coating on the lithium ion storage performances of electrospun NiO/Co3O4 nanotubes[J]. J Phys Chem C, 2020, 124(1): 143-151.

    [83] MOU H Y, CHEN S X, XIAO W, et al. Encapsulating homogenous ultra-fine SnO2/TiO2 particles into carbon nanofibers through electrospinning as high-performance anodes for lithium-ion batteries[J]. Ceram Int, 2021, 47(14): 19945-19954.

    [84] ZAN F, JABEEN N, XIONG W, et al. SnO2/Fe2O3 hybrid nanofibers as high performance anodes for lithium-ion batteries[J]. Nanotechnology, 2020, 31(18): 185402.

    [85] XIN Y, NIE S Q, PAN S, et al. Electrospinning fabrication of Sb-SnSb/TiO2@CNFs composite nanofibers as high-performance anodes for lithium-ion batteries[J]. J Colloid Interface Sci, 2023, 630: 403-414.

    [86] CHENG Z L, HU Y, WU K S, et al. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries[J]. Electrochim Acta, 2020, 337: 135789.

    [87] WANG A, XIE S M, ZHANG R, et al. Chemical vapor deposition growth of carbon nanotube confined nickel sulfides from porous electrospun carbon nanofibers and their superior lithium storage properties[J]. Nanoscale Adv, 2019, 1(2): 656-663.

    [88] LIN J, LI Y F, SONG Y H, et al. Inner-outer dual space protection of free-standing MoS2 anodes via electrospinning for stable lithium-ion storage[J]. Nanotechnology, 2023, 34(40): 405402.

    [89] XIA J, ZHANG X, YANG Y A, et al. Electrospinning fabrication of flexible, foldable, and twistable Sb2S3/TiO2/C nanofiber anode for lithium ion batteries[J]. Chem Eng J, 2021, 413: 127400.

    SHEN Ding, ZHAO Shiyu, FU Xiaofan, YU Haoran, JI Yanzhen, DONG Wei. Research Progress on Electrospinning Technology in Negative Electrode Materials for Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2396
    Download Citation