• Matter and Radiation at Extremes
  • Vol. 5, Issue 3, 038102 (2020)
Ho-kwang Mao1,a) and Wendy L. Mao2,3
Author Affiliations
  • 1Center for High Pressure Science and Technology Advanced Research, 10 Dongbeiwang West Road, Haidian, Beijing 100094, China
  • 2Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
  • 3Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • show less
    DOI: 10.1063/1.5139023 Cite this Article
    Ho-kwang Mao, Wendy L. Mao. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3): 038102 Copy Citation Text show less
    References

    [1] S. H. Richardson, S. B. Shirey. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333, 434-436(2011).

    [2] R. E. Ernst, N. Youbi. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr., Palaeoclimatol., Palaeoecol., 478, 30-52(2017).

    [3] H. D. Holland. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta, 66, 3811-3826(2002).

    [4] G. P. Halverson, P. F. Hoffman, A. J. Kaufman, D. P. Schrag. A neoproterozoic snowball earth. Science, 281, 1342-1346(1998).

    [5] Q. Hu, D. Y. Kim, J. Liu, H. K. Mao, W. L. Mao, Y. Meng, V. B. Prakapenka, L. Yang, W. Yang, L. Zhang. When water meets iron at Earth’s core-mantle boundary. Natl. Sci. Rev., 4, 870-878(2017).

    [6] P. Chow, Q. Hu, D. Y. Kim, J. Liu, H. K. Mao, W. L. Mao, Y. Meng, V. B. Prakapenka, W. Wang, Z. Wu, Y. Xiao. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature, 551, 494-497(2017).

    [7] Q. Hu, D. Y. Kim, J. Liu, H. K. Mao, W. L. Mao, Y. Meng, L. Yang, D. Zhang. Dehydrogenation of goethite in Earth’s deep lower mantle. Proc. Natl. Acad. Sci. U. S. A., 114, 1498-1501(2017).

    [8] Q. Hu, D. Y. Kim, H. K. Mao, Y. Meng, L. Yang, W. Yang, L. Zhang. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature, 534, 241-244(2016).

    [9] Y. Kuwayama, M. Nishi, J. Tsuchiya, T. Tsuchiya. The pyrite-type high-pressure form of FeOOH. Nature, 547, 205-208(2017).

    [10] D. Ikuta, S. Kamada, H. Naohisa, Y. Ohishi, E. Ohtani, A. Suzuki, J. Tsuchiya, L. Yuan. Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth’s mantle and core. Geophys. Res. Lett., 45, 1330-1338(2018).

    [11] A.-L. Auzende, E. Boulard, A. Corgne, G. Fiquet, F. o. Guyot, N. Menguy, J.-P. Perrillat. CO2-induced destabilization of pyrite-structured FeO2Hx in the lower mantle. Natl. Sci. Rev., 5, 870(2018).

    [12] L. W. Alvarez, W. Alvarez, F. Asaro, E. G. Kauffman, H. V. Michel, F. Surlyk. Impact theory of mass extinctions and the invertebrate fossil record. Science, 223, 1135-1141(1984).

    [13] T. W. Lyons, N. J. Planavsky, C. T. Reinhard. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307-315(2014).

    [14] S. Maruyama, M. Santosh, S. Yamamoto. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res., 15, 324-341(2009).

    [15] L. Coes. A new dense crystalline silica. Science, 118, 131-132(1953).

    [16] S. E. Boulfelfel, A. F. Goncharov, Z. Konopkova, A. O. Lyakhov, A. R. Oganov, V. B. Prakapenka, M. Somayazulu, E. Stavrou, W. Zhang, Q. Zhu. Unexpected stable stoichiometries of sodium chlorides. Science, 342, 1502-1505(2013).

    [17] J. Badro, G. Fiquet, F. Guyot, G. Monaco, J.-P. Rueff, G. Vanko. Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383-385(2004).

    [18] A. F. Goncharov, R. J. Hemley, H. K. Mao, M. S. Somayazulu, V. V. Struzhkin. Compression of ice to 210 GPa: Evidence for a symmetric hydrogen bonded phase. Science, 273, 218-220(1996).

    [19] Y. He, Q. Hu, D. Y. Kim, H. K. Mao, R. J. Needs, C. J. Pickard. Superionic hydrogen in Earth’s deep interior(2018).

    [20] B. A. Buffett, J. Hernlund, T. Lay. Core–mantle boundary heat flow. Nat. Geosci., 1, 25-32(2008).

    [21] E. J. Garnero, T. Lay, Q. Williams. The core-mantle boundary layer and deep Earth dyamics. Nature, 392, 461-468(1998).

    [22] H. K. Mao, Y. Meng, H. Yuan, L. Zhang. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proc. Natl. Acad. Sci. U. S. A., 115, 2908-2911(2018).

    [23] X.-J. Chen, Y. Ding, B. Li, H. K. Mao, L. Wang. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).

    [24] T. S. Duffy. Synchrotron facilities and the study of the earth’s deep interior. Rep. Prog. Phys., 68, 1811-1859(2005).

    [25] H. K. Mao, G. Shen. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys., 80, 016101(2017).

    [26] P. M. Bell, H. K. Mao. Electrical conductivity and the red shift of absorption in olivine and spinel at high pressure. Science, 176, 403-406(1972).

    [27] P. Gillet, A. F. Goncharov, R. J. Hemley, H. K. Mao, S. Merkel. Raman spectroscopy of iron to 152 gigapascals: Implications for Earth’s inner core. Science, 288, 1626-1629(2000).

    [28] D. Alfè, E. Alp, P. Eng, H. Giefers, M. J. Gillan, D. Häusermann, R. J. Hemley, M. Hu, R. Lübbers, H. K. Mao, G. D. Price, M. Schwoerer-Böhning, G. Shen, J. Shu, V. V. Struzhkin, W. Sturhahn, L. Vocadlo, G. Wortmann, J. Xu. Phonon density of states of iron up to 153 GPa. Science, 292, 914-916(2001).

    [29] Y. Fei, R. J. Hemley, H. K. Mao, W. L. Mao, Y. Meng, V. B. Prakapenka, J. Shu, W. Sturhahn, J. Zhao. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science, 312, 564-565(2006).

    [30] R. Caracas, A. E. Gleason, W. Mao, M. M. Reagan, E. A. Schauble, A. Shahar, J. Shu, Y. Xiao. Pressure-dependent isotopic composition of iron alloys. Science, 352, 580-582(2016).

    [31] E. E. Alp, W. Bi, N. Dauphas, J. Y. Hu, M. Y. Hu, J.-F. Lin, J. Liu, M. Roskosz, H. Yang, J. Zhao. Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nat. Commun., 8, 14377(2017).

    [32] J. Badro, G. Fiquet, F. Guyot, M. Krisch, H. Requardt. Sound velocities in iron to 110 gigapascals. Science, 291, 468-471(2001).

    [33] J. Davaasambu, E. F. Garman, C. Gundlach, J. Oddershede, K. S. Paithankar, a. H. F. Poulsen, S. Schmidt, H. O. Sørensen, S. Techert, G. B. M. Vaughan, J. P. Wright. Multigrain crystallography. Z. Kristallogr., 227, 63-78(2012).

    [34] J. S. Jeong, W. Liu, H. K. Mao, W. L. Mao, Y. Meng, K. A. Mkhoyan, A. J. Wagner, L. Wang, R. Xu, W. Yang, Q.-S. Zeng, L. Zhang. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science, 344, 877-882(2014).

    [35] J. C. Andrews, Y. Liu, W. L. Mao, Y. Meng, C. Y. Shi, J. Wang, W. Yang, L. Zhang. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat. Geosci., 6, 971-975(2013).

    [36] S. A. Peacock. Fluid processes in subduction zones. Science, 248, 329-337(1990).

    [37] G. A. Abers, B. R. Hacker, E. M. Syracuse, P. E. van Keken. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res., 116, B01401(2011).

    [38] T. W. Becker, K. G. Dueker, S. D. Jacobsen, Z. Liu, B. Schmandt. Dehydration melting at the top of the lower mantle. Science, 344, 1265-1268(2014).

    [39] S. A. Halldórsson, L. J. Hallis, D. R. Hilton, G. R. Huss, K. J. Meech, M. J. Mottl, K. Nagashima, G. J. Taylor. Evidence for primordial water in Earth’s deep mantle. Science, 350, 795-797(2015).

    [40] K. Fujino, Y. Higo, T. Irifune, M. Nishi, Y. Nishihara, Y. Tange, J. Tsuchiya. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci., 7, 224-227(2014).

    [41] N. Hirao, M. Miyahara, M. Nishijima, I. Ohira, Y. Ohishi, E. Ohtani, T. Sakai. Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet. Sci. Lett., 401, 12-17(2014).

    [42] C. R. Bina, S. D. Jacobsen, J. P. Townsend, J. Tsuchiya. Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth Planet. Sci. Lett., 454, 20-27(2016).

    [43] M. Nishi. Mantle hydration. Nat. Geosci., 8, 9-10(2015).

    [44] Q. Hu, Y. Lin, H. K. Mao, Y. Meng, M. Walter. Evidence for water entering the lower mantle from the stability of an ultrahydrous stishovite at high pressure and temperature. Proc. Natl. Acad. Sci. U. S. A., 117, 184-189(2020).

    [45] J. W. Harris, S. D. Jacobsen, K. Marquardt, C. A. McCammon, N. Miyajima, F. Nestola, M. Palot, D. G. Pearson, T. Stachel, J. P. Townsend. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 265, 237-243(2016).

    [46] E. Greenberg, S. Huang, A. Lanzirotti, C. Ma, M. Newville, V. B. Prakapenka, G. R. Rossman, A. H. Shen, K. Tait, O. Tschauner, D. Zhang. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science, 359, 1136-1139(2018).

    [47] Q. Hu, H. K. Mao, W. L. Mao, H. Sheng, S.-c. Zhu. Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism of FeO2H at high pressure. J. Am. Chem. Soc., 139, 12129-12132(2017).

    [48] N. Alem, J. V. Badding, G. D. Cody, V. H. Crespi, S. K. Davidowski, T. C. Fitzgibbons, M. Guthrie, E.-s. Xu. Benzene-derived carbon nanothreads. Nat. Mater., 14, 43(2014).

    [49] P.-N. Chen, X.-J. Chen, A. F. Goncharov, K. D. Litasov, S. S. Lobanov, H. K. Mao, C.-S. Zha. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun., 4, 2446(2013).

    [50] T. Okuchi. Hydrogen partitioning into molten iron at high pressure: Implications for Earth’s core. Science, 278, 1781-1784(1997).

    [51] C. McCammon. The paradox of mantle redox. Science, 308, 807-808(2005).

    [52] P. M. Bell, H. K. Mao, A. V. Valkenburg, R. A. Weeks. High-pressure disproportionation study of iron in synthetic basalt glass. Carnegie Inst. Washington Yearb., 75, 515-520(1976).

    [53] P. M. Bell, H. K. Mao. Preliminary evidence of disproportionation of ferrous iron in silicates at high pressures and temperatures. Carnegie Inst. Washington Yearb., 74, 557-559(1975).

    [54] D. J. Frost, F. Langenhorst, C. Liebske, C. A. McCammon, D. C. Rubie, R. G. Trønnes. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409-412(2004).

    [55] C. Chen, X. Feng, H. Li, H. Liu, C. Lu, J. Lv, Y. Ma, S. A. T. Redfern, J. Zhang. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions. Phys. Rev. Lett., 121, 255703(2018).

    [56] W. Bi, P. Chow, Q. Hu, J. Liu, H. K. Mao, W. L. Mao, Y. Meng, V. B. Prakapenka, Y. Xiao, L. Yang. Altered chemistry of oxygen and iron under Earth conditions. Nat. Commun., 10, 153(2018).

    [57] S. Boccato, E. Boulard, R. Briggs, D. Cabaret, G. Fiquet, F. Guyot, M. Harmand, G. Lelong, G. Morard, S. Pascarelli, A. D. Rosa. Ferrous iron under oxygen-rich conditions in the deep mantle. Geophys. Res. Lett., 46, 1348-1356(2019).

    [58] S. Desgreniers, P. Loubeyre, L. F. Lundegaard, M. I. McMahon, G. Weck. Observation of an O8 molecular lattice in the e phase of solid oxygen. Nature, 443, 201-204(2006).

    [59] P. J. Eng, S. A. Gramsch, R. J. Hemley, M. Y. Hu, C.-c. Kao, H. K. Mao, Y. Meng, D. M. Shaw, J. Shu, J. S. Tse. Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proc. Natl. Acad. Sci. U. S. A., 105, 11640-11644(2008).

    [60] C. Frost, C. Holzapfel, F. Langenhorst, D. Rubie. Fe-Mg interdiffusion in (Mg,Fe)SiO3 perovskite and lower mantle reequilibration. Science, 309, 1707-1710(2005).

    [61] J. D. Frantz, H. K. Mao. Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences. Am. J. Sci., 279, 302-323(1979).

    [62] D. L. Anderson. The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs. Earth Planet. Sci. Lett., 123, 269-280(1994).

    [63] S. J. Baker, C. M. Belcher, L. s. V. Duarte, S. P. Hesselbo, T. M. Lenton. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun., 8, 15018(2017).

    [64] C. B. Keller, D. A. Stolper. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature, 553, 323-327(2018).

    [65] Z. Gao, S. W. Poulton, Y. Shi, R. A. Wood, K. Zhang, X. Zhu. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat. Geosci., 11, 345-350(2018).

    [66] I. A. Hilburn, J. L. Kirschvink, R. E. Kopp, C. Z. Nash. The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. U. S. A., 102, 11131-11136(2005).

    [67] K. S. Carslaw, P. M. Forster, D. Fowler, G. W. Mann, A. Rap, A. Ridgwell, A. Schmidt, S. Self, R. A. Skeffngton, T. Thordarson, P. B. Wignall, M. Wilson. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci., 9, 77(2016).

    [68] A. D. Barnosky, E. A. Ferrer, E. L. Lindsey, K. C. Maguire, C. Marshall, N. Matzke, J. L. McGuire, B. Mersey, T. B. Quental, B. Swartz, S. Tomiya, G. O. U. Wogan. Has the Earth’s sixth mass extinction already arrived?. Nature, 471, 51-57(2011).

    [69] M. R. Rampino. Mass extinctions of life and catastrophic flood basalt volcanism. Proc. Natl. Acad. Sci. U. S. A., 107, 6555-6556(2010).

    [70] S. E. Peters. Environmental determinants of extinction selectivity in the fossil record. Nature, 454, 626-629(2008).

    [71] C.-T. A. Lee, A. Lenardic, N. R. McKenzie, K. Ozaki, L. Y. Yeung, Y. Yokoyama. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci., 9, 417-424(2016).

    [72] T. Gu, K. K. M. Lee, M. Li, C. McCammon. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci., 9, 723-727(2016).

    [73] D. Andrault, V. Cerantola, A. Chumakov, L. Hennet, I. Kantor, M. Muñoz, S. Pascarelli, G. Pesce, R. Rüffer. Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochem. Perspect. Lett., 6, 5-10(2018).

    [74] R. Dasgupta, M. S. Duncan. Rise of Earth’s atmospheric oxygen controlled by effcient subduction of organic carbon. Nat. Geosci., 10, 387-392(2017).

    Ho-kwang Mao, Wendy L. Mao. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3): 038102
    Download Citation