• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 065201 (2020)
Yanqi Gao1、a), Yong Cui1, Lailin Ji1, Daxing Rao1, Xiaohui Zhao1, Fujian Li1, Dong Liu1, Wei Feng1, Lan Xia1, Jiani Liu1, Haitao Shi1, Pengyuan Du1, Jia Liu1, Xiaoli Li1, Tao Wang1, Tianxiong Zhang1, Chong Shan1, Yilin Hua1, Weixin Ma1, Xun Sun2, Xianfeng Chen3, Xiuguang Huang1, Jian Zhu1, Wenbing Pei1, Zhan Sui1, and Sizu Fu1
Author Affiliations
  • 1Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 3School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
  • show less
    DOI: 10.1063/5.0009319 Cite this Article
    Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201 Copy Citation Text show less
    References

    [1] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [2] J. D. Rigden, E. I. Gordon. The granularity of scattered optical maser light. Proc. IRE, 50, 2367-2368(1962).

    [3] R. Moeller, W. Burns, C.-L. Chen. Fiber-optic gyroscopes with broad-band sources. J. Lightwave Technol., 1, 98-105(1983).

    [4] J. Lindl, O. Landen, J. Edwards et al. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [5] C. Labaune. Incoherent light on the road to ignition. Nat. Phys., 3, 680-682(2007).

    [6] P. Amendt, J. D. Lindl, R. L. Berger et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339-491(2004).

    [7] R. S. Craxton, T. R. Boehly, K. S. Anderson et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [8] M. Chen, Z. Fan, Z. Dai et al. A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion(2013).

    [9] D. Shvarts, V. A. Smalyuk, R. Betti et al. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. Phys. Rev. Lett., 100, 185005(2008).

    [10] J. L. Weaver, M. Karasik, Y. Aglitskiy et al. Suppression of laser nonuniformity imprinting using a thin high-Z coating. Phys. Rev. Lett., 114, 085001(2015).

    [11] D. S. Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasma, 23, 055601(2016).

    [12] D. H. Froula, L. Divol, S. H. Glenzer et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).

    [13] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [14] D. A. Callahan, O. A. Hurricane, D. T. Casey et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [15] J. A. Marozas, M. J. Rosenberg, M. Hohenberger et al. First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility. Phys. Rev. Lett., 120, 085001-1-085001-6(2018).

    [16] T. J. Kessler, G. N. Lawrence, Y. Lin. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. Opt. Lett., 20, 764-766(1995).

    [17] K. Mima, N. Miyanaga, Y. Kato et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53, 1057-1060(1984).

    [18] G. N. Lawrence, T. J. Kessler, Y. Lin. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance. Opt. Lett., 21, 1703-1705(1996).

    [19] X. Deng, Z. Chen, X. Liang et al. Uniform illumination of large targets using a lens array. Appl. Opt., 25, 377-381(1986).

    [20] T. Kessler, R. W. Short, S. Skupsky et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys., 66, 3456-3462(1989).

    [21] L. M. Divol, R. L. Berger, S. H. Glenzer et al. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas, 8, 1692-1696(2001).

    [22] A. J. Schmitt, S. E. Bodner, R. H. Lehmberg. Theory of induced spatial incoherence. J. Appl. Phys., 62, 2680-2701(1987).

    [23] D. Véron, G. Thiell, C. Gouédard. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Opt. Commun., 97, 259-271(1993).

    [24] C. Bibeau, D. R. Speck, R. B. Ehrlich et al. Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system. Appl. Opt., 31, 5799-5809(1992).

    [25] S. P. Regan, V. N. Goncharov, E. M. Campbell et al. National direct-drive program on OMEGA and the National Ignition Facility. Plasma. Phys. Controlled Fusion, 59, 014008(2017).

    [26] K. R. Manes, M. Bowers, M. L. Spaeth et al. National Ignition Facility laser system performance. Fusion Sci. Technol., 69, 366-394(2016).

    [27] N. Fleurot, J. L. Bourgade, C. Cavailler. The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des., 74, 147-154(2005).

    [28] C. Yamanaka. Gekko XII glass laser system. Rev. Laser Eng., 11, 586-611(1983).

    [29] F. Wang, Y. Ding, S. Jiang et al. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China. Nucl. Fusion, 59, 032006(2019).

    [30] J. E. Rothenberg. Polarization beam smoothing for inertial confinement fusion. J. Appl. Phys., 87, 3654(2000).

    [31] S. P. Obenschain, A. N. Mostovych, J. H. Gardner et al. Brillouin scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light. Phys. Rev. Lett., 59, 1193-1196(1987).

    [32] L. Divol, J. D. Moody, P. Michel et al. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 8, 344-349(2012).

    [33] O. A. Hurricane, R. Betti. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [34] R. H. Lehmberg, S. Obenschain, M. S. Pronko et al. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystal in quadrature. IEEE J. Quantum Electron., 26, 337-347(1990).

    [35] N. Miyanaga, T. Kanabe, M. Nakatsuka et al. Partially coherent light sources for ICF experiment. Proc. SPIE, 1870, 151-162(1993).

    [36] S. I. Fedotov, L. P. Feoktistov, M. V. Osipov et al. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 25, 79-92(2004).

    [37] O. L. Landen, S. H. Glenzer, E. L. Dewald et al. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility. Plasma Phys. Controlled Fusion, 47, B405-B417(2005).

    [38] X. Tian, H. Jia, R. Zhang et al. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing. Opt. Laser. Eng., 85, 38-47(2016).

    [39] A. N. Starodub, A. A. Kozhevnikova, S. I. Fedotov et al. Interaction of partially coherent laser radiation with matter. Proc. SPIE, 6595, 65950A(2007).

    [40] E. M. Hill, J. D. Zuegel, C. Dorrer. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 28, 451-471(2020).

    [41] J. G. Shaw, J. W. Bates, J. F. Myatt et al. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 97, 061202(2018).

    [42] M. Chen, S. Weng, Y. Zhao et al. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2, 190-196(2017).

    [43] D. Rao, Y. Gao, Y. Cui et al. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control. Opt. Laser Technol., 122, 105850(2020).

    [44] Y. Cui, Y. Gao, D. Rao et al. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 44, 2859-2862(2019).

    [45] L. Ji, D. Liu, X. Zhao et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 44, 4359-4362(2019).

    [46] L. L. Ji, D. Liu, X. H. Zhao et al. Second-harmonic generation of temporally low-coherence light. APL Photonics, 5, 091301(2020).

    [47] F. J. Li, Y. Q. Gao, X. H. Zhao et al. Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect. Opt. Eng., 57, 066117(2018).

    [48] X. Zhao, F. Li, Y. Gao et al. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence. Appl. Opt., 58, 2121-2126(2019).

    [49] X. Zhao, F. Li, Y. Gao et al. Experiment and theory of beam smoothing using induced spatial incoherence with lens array. Appl. Opt., 59, 2976-2982(2020).

    [50] L. Ji, Y. Gao, X. Zhao et al. Low-coherence high-power laser facility.

    [51] G. V. Erbert, P. J. Wisoff, M. W. Bowers et al. NIF injection laser system. Proc. SPIE, 5341, 146-155(2004).

    [52] M. Bowers, S. Cohen, S. Burkhart et al. The injection laser system on the National Ignition Facility. Proc. SPIE, 6451, 64511M(2007).

    [53] W. Fan, Y. Jiang, J. Wang et al. Progress of the injection laser system of SG-II. High Power Laser Sci., 6, e34(2018).

    [54] H. Nakano, K. Yagi, T. Kanabe et al. Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass. Opt. Commun., 78, 123(1990).

    [55] H. Nakano, K. Tsubakimoto, N. Miyanaga et al. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system. J. Appl. Phys., 73, 2122(1993).

    [56] K. Yagi, N. Miyanaga, H. Nakano et al. Partially coherent light generated by using single and multimode optical fibers in a high‐power Nd:glass laser system. Appl. Phys. Lett., 63, 580(1993).

    [57] V. G. Dmitriev, M. V. Osipov, V. N. Puzyrev et al. Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal. J. Phys. B: At., Mol. Opt. Phys., 45, 165401(2012).

    [58] M. A. Andre, N. A. Fleurot, P. Estraillier et al. Output pulse and energy capabilities of the PHEBUS laser facility.

    [59] A. C. L. Boscheron, J. C. Garnier, L. Videau et al. Recent results of optical smoothing on the PHEBUS laser. Proc. SPIE, 3047, 757(1997).

    [60] J. M. Auerbach, P. J. Wegner, C. A. Haynam et al. National Ignition Facility laser performance status. Appl. Opt., 46, 3276(2007).

    [61] J. S. Nodvik, L. M. Frantz. Theory of pulse propagation in a laser amplifier. J. Appl. Phys., 34, 2346(1963).

    [62] D. Veron, C. Gouedard, G. Thiell et al. Focal spot smoothing by amplification of reduced coherence pulse in the high power Nd-glass PHEBUS laser. Proc. SPIE, 1870, 140-150(1993).

    [63] C. Gouédard, P. Donnat, D. Veron et al. Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers. Opt. Lett., 17, 331-333(1992).

    [64] C. Rouyer, E. Bar, L. Videau et al. Control of the amplification of large band amplitude modulated pulses in Nd-glass amplifier chain. Proc. SPIE, 3492, 277-284(1998).

    [65] J. P. Fouque, L. Videau, J. Garnier et al. Amplification of broadband incoherent light in homogeneously broadened media in the presence of Kerr nonlinearity. J. Opt. Soc. Am. B, 14, 2563-2569(1997).

    [66] J. Garnier, C. Gouédard, L. Videau et al. Propagation and amplification of incoherent pulses in dispersive and nonlinear media. J. Opt. Soc. Am. B, 15, 2773-2781(1998).

    [67] A. E. Hill, C. W. Peters, P. A. Franken et al. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [68] P. S. Pershan, N. Bloembergen. Light waves at boundary of nonlinear media. Phys. Rev., 128, 606-622(1962).

    [69] J. Reintjes, R. Eckardt. Phase matching limitations of high efficiency second harmonic generation. IEEE J. Quantum Electron., 20, 1178-1187(1984).

    [70] O. E. Martinez. Achromatic phase matching for second harmonic generation of femtosecond pulses. IEEE J. Quantum Electron., 25, 2464-2468(1989).

    [71] Z. Bor, G. Szabo. Broadband frequency doubler for femtosecond pulses. Appl. Phys. B, 50, 51-54(1990).

    [72] S. E. Bisson, B. A. Richman, R. Trebino et al. Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms. Opt. Lett., 23, 497-499(1998).

    [73] M. Brown. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs. Opt. Lett., 23, 1591-1593(1998).

    [74] S. Ashihara, T. Shimura, K. Kuroda. Group-velocity matched second-harmonic generation in tilted quasiphase-matched gratings. J. Opt. Soc. Am. B, 20, 853-856(2003).

    [75] E. M. Garmire, G. Y. Wang. High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry. Opt. Lett., 19, 254-256(1994).

    [76] S. B. Fleischer, L. E. Nelson, G. Lenz et al. Efficient frequency doubling of a femtosecond fiber laser. Opt. Lett., 21, 1759-1761(1996).

    [77] F. W. Wise, L. Qian, X. Liu. Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5. Opt. Commun., 144, 265-268(1997).

    [78] N. E. Yu, J. H. Ro, M. Cha et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band. Opt. Lett., 27, 1046-1048(2002).

    [79] D. Eimerl, M. S. Webb, S. P. Velsko. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP. J. Opt. Soc. Am. B, 9, 1118-1127(1992).

    [80] L. Ji, B. Zhu, C. Liu et al. Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm. Chin. Opt. Lett., 12, 031902(2014).

    [81] C. E. Barker, J. M. Auerbach, D. Eimerl et al. Multicrystal designs for efficient third-harmonic generation. Opt. Lett., 22, 1208-1210(1997).

    [82] Optomechanical system. OMEGA System Operations Manual: Volume I–System Description(2003).

    [83] S. Oskoui, R. S. Craxton, A. Babushkin et al. Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation. Opt. Lett., 23, 927-929(1998).

    [84] F. Raoult, A. C. L. Boscheron, D. Husson et al. Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching. Opt. Lett., 24, 354-356(1999).

    [85] A. C. L. Boscheron, A. Migus, C. J. Sauteret. Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-nm ultrabroadband or ultrashort-pulse generation. J. Opt. Soc. Am. B, 13, 818-826(1996).

    [86] L. J. Qian. Chirp matched third-harmonic generation for broad-band laser. Acta. Opt. Sin., 15, 662-664(1995).

    [87] P. Yuan, Y. Chen, L. Qian. A broadband frequency-tripling scheme for an Nd:glass laser-based chirped-pulse amplification system: An approach for efficiently generating ultraviolet petawatt pulses. J. Opt., 13, 075205(2011).

    [88] W. Zheng, H. Zhu, T. Wang et al. Efficient second harmonic generation of femtosecond laser at 1 μm. Opt. Express, 12, 2150-21555(2004).

    [89] E. Rozenberg, A. Arie. Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal. Opt. Lett., 44, 3358-3361(2019).

    [90] L. Qian, W. Zheng, P. Yuan et al. Broadband frequency tripling based on segmented partially deuterated KDP crystals. J. Opt. A: Pure Appl. Opt., 9, 1082-1086(2007).

    [91] K. Lee, S. Skupsky. Uniformity of energy deposition for laser driven fusion. J. Appl. Phys., 54, 3662-3671(1983).

    [92] S. N. Dixit, I. M. Thomas, B. W. Woods et al. Random phase plates for beam smoothing on the Nova laser. Appl. Opt., 32, 2543-2554(1993).

    [93] J. J. Armstrong, J. K. Terrance, L. Ying et al. Phase conversion of lasers with low-loss distributed phase plates. Proc. SPIE, 1870, 95(1993).

    [94] J. K. Lawson, K. R. Manes, S. N. Dixit et al. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19, 417-419(1994).

    [95] J. A. Marozas. Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility. J. Opt. Soc. Am. A, 24, 74-83(2007).

    [96] R. H. Lehmberg, S. P. Obenschain. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 46, 27-31(1983).

    [97] T. A. Peyser, S. P. Obenschain, C. K. Manka et al. Reduction of 3ω0/2 emission from laser‐produced plasmas with broad bandwidth, induced spatial incoherence at 0.53 μm. Phys. Fluids B, 3, 1479-1484(1991).

    [98] S. Skupsky, R. S. Craxton. Irradiation uniformity for high-compression laser-fusion experiments. Phys. Plasmas, 6, 2157-2163(1999).

    [99] S. P. Regan, J. A. Marozas, R. S. Craxton et al. Performance of 1-THz-bandwidth two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams. J. Opt. Soc. Am. B, 22, 998(2005).

    [100] S. Urushihara, G. Miyaji, N. Miyanaga et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile. Opt. Lett., 27, 725-727(2002).

    [101] J. E. Rothenberg. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion. J. Opt. Soc. Am. B, 14, 1664-1671(1997).

    [102] S. N. Dixit, D. M. Pennington, T. L. Weiland et al. Implementation and performance of beam smoothing on 10 beams of the Nova laser. Proc. SPIE, 3047, 725-735(1997).

    [103] T. E. Gunderman, J. Lee, T. J. Kessler et al. Liquid crystal distributed polarization rotator for improved uniformity of focused laser light, 7(1990).

    [104] K. Tsubakimoto, H. Nakano, M. Nakatsuka et al. Suppression of interference speckles produced by a random phase plate, using a polarization control plate. Opt. Commun., 91, 9-12(1992).

    [105] V. A. Smalyuk, T. R. Boehly, D. D. Meyerhofer et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser. J. Appl. Phys., 85, 3444(1999).

    [106] S. P. Obenschain, S. E. Bodner, D. Colombant et al. The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas, 3, 2098-2107(1996).

    [107] H. Ayral, D. Véron, C. Gouedard et al. Optical spatial smoothing of Nd-glass laser beam. Opt. Commun., 65, 42-46(1988).

    [108] J.-R. Marquès, V. Malka, J. Faure et al. Dynamics of Raman instabilities using chirped laser pulses. Phys. Rev. E, 63, 065401(2001).

    [109] B. Afeyan, B. J. Albright, L. Yin. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay. Phys. Rev. Lett., 113, 045002(2014).

    [110] J. Park, X. Li. Theoretical and numerical analysis of superluminescent diodes. J. Lightwave Technol., 24, 2473(2006).

    [111] D. B. Gilbert, M. G. Harvey, G. A. Alphonse et al. High-power superluminescent diodes. IEEE J. Quantum Electron., 24, 2454-2457(1988).

    [112] O. Imafuji, Y. Kouchi, T. Takayama et al. 100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure. IEEE J. Quantum Electron., 32, 1981-1987(1996).

    [113] A. M. Weiner, L. Wang. Programmable spectral phase coding of an amplified spontaneous emission light source. Opt. Commun., 167, 211-224(1999).

    [114] P. Andres, V. Torres-Company, J. Lancis. Arbitrary waveform generator based on all-incoherent pulse shaping. IEEE Photonics Technol. Lett., 18, 2626-2628(2006).

    [115] C. Dorrer. Statistical analysis of incoherent pulse shaping. Opt. Express, 17, 3341-3352(2009).

    [116] K. Lan, P. Song. Foam Au driven by 4ω − 2ω ignition laser pulse for inertial confinement fusion. Phys. Plasmas, 24, 052707(2017).

    [117] Y.-H. Chen, W. Zheng, K. Lan et al. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light. Phys. Plasmas, 25, 022702(2018).

    Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201
    Download Citation