• Optical Instruments
  • Vol. 45, Issue 5, 53 (2023)
Lingyu WANG, Qiuyang SONG, Yu MIAO, and Xiumin GAO*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093
  • show less
    DOI: 10.3969/j.issn.1005-5630.2023.005.007 Cite this Article
    Lingyu WANG, Qiuyang SONG, Yu MIAO, Xiumin GAO. Design of all-dielectric metalens with linearly polarized focusing based on Pancharatnam-Berry phase[J]. Optical Instruments, 2023, 45(5): 53 Copy Citation Text show less
    References

    [1] CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 17, 3188-3194(2017).

    [2] FAN Z B, QIU H Y, ZHANG H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light:Science & Applications, 8, 67(2019).

    [3] ZHOU X M, ASSOUAR M B, OUDICH M. Acoustic superfocusing by solid phononic crystals[J]. Applied Physics Letters, 105, 233506(2014).

    [4] ADDOUCHE M, Al-LETHAWE M A, CHOUJAA A, et al. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index[J]. Applied Physics Letters, 105, 023501(2014).

    [5] LI J, WANG Z, MA Y, et al. Design of high-resolution near-field focusing metasurface lens[J]. Journal of Electromagnetic Waves and Applications, 35, 2115-2124(2021).

    [6] ALI H, NI H B, XU X. Near-UV luminescence tomography with an aperture-free meta super oscillatory lens for single molecule detection[J]. Journal of the Optical Society of America A, 37, 621-628(2020).

    [7] TIAN Z C, GUO Y M, HU C Y, et al. Broadband efficient focusing on-chip integrated nano-lens[J]. Acta Physica Sinica, 69, 244201(2020).

    [8] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 392, 45-57(1984).

    [9] HASMAN E, KLEINER V, BIENER G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Applied Physics Letters, 82, 328-330(2003).

    [10] CHEN Y Z, ZHOU C X, LUO X G, et al. Structured lens formed by a 2D square hole array in a metallic film[J]. Optics Letters, 33, 753-755(2008).

    [11] KANG M, FENG T H, WANG H T, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 20, 15882-15890(2012).

    [12] AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).

    [13] ZHANG Y C, LIU W W, GAO J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Advanced Optical Materials, 6, 1701228(2018).

    [14] MONTICONE F, ESTAKHRI N M, ALÙ A. Full control of nanoscale optical transmission with a composite metascreen[J]. Physical Review Letters, 110, 203903(2013).

    [15] CHEN X Z, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [16] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [17] HUANG L L, MÜHLENBERND H, LI X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 27, 6444-6449(2015).

    [18] WEN D D, CHEN S M, YUE F Y, et al. Metasurface device with helicity-dependent functionality[J]. Advanced Optical Materials, 4, 321-327(2016).

    [19] ZHANG C M, YUE F Y, WEN D D, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams[J]. ACS Photonics, 4, 1906-1912(2017).

    [20] TCHOUMAKOV S, CAYSSOL J, GRUSHIN A G. Three-dimensional chiral Veselago lensing[J]. Physical Review B, 105, 075309(2022).

    [21] PANCHARATNAM S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 247-262(1956).

    [22] BN M, WOLF E. Principles of optics: electromagic they of propagation, interference diffraction of light[M]. Oxfd: Pergamon Press, 1980: 188 189.

    [24] ELLENBOGEN T, SEO K, CROZIER K B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry[J]. Nano Letters, 12, 1026-1031(2012).

    [25] PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 1, e1500396(2015).

    [26] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [27] GIL J J, BERNABEU E. Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix[J]. Optik, 76, 67-71(1987).

    [28] BOMZON Z, BIENER G, KLEINER V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [29] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    Lingyu WANG, Qiuyang SONG, Yu MIAO, Xiumin GAO. Design of all-dielectric metalens with linearly polarized focusing based on Pancharatnam-Berry phase[J]. Optical Instruments, 2023, 45(5): 53
    Download Citation