• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026010 (2023)
Yuyang Shui1, Ting Wang2, Jianying Zhou1、3, Xin Luo1, Yikun Liu1、2、3、*, and Haowen Liang1、3、*
Author Affiliations
  • 1Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangzhou, China
  • 2Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Zhuhai, China
  • 3Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
  • show less
    DOI: 10.1117/1.APN.2.2.026010 Cite this Article Set citation alerts
    Yuyang Shui, Ting Wang, Jianying Zhou, Xin Luo, Yikun Liu, Haowen Liang. Scattered light imaging beyond the memory effect using the dynamic properties of thick turbid media[J]. Advanced Photonics Nexus, 2023, 2(2): 026010 Copy Citation Text show less
    References

    [1] M. B. Nasr et al. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett., 91, 083601(2003).

    [2] D. Debarre et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).

    [3] H. Kogelnik, K. S. Pennington. Holographic imaging through a random medium. J. Opt. Soc. Am., 58, 273-274(1968).

    [4] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [5] A. P. Mosk et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 6, 283-292(2012).

    [6] H. Li et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm. Photonics Res., 9, 202-212(2021).

    [7] Y. Luo et al. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photonics Res., 9, B262-B278(2021).

    [8] Z. Yu et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022).

    [9] P. Lai et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [10] J. Schneider, C. M. Aegerter. Guide star based deconvolution for imaging behind turbid media. J. Eur. Opt. Soc. Rapid Publ., 14, 21(2018).

    [11] H. He, Y. Guan, J. Zhou. Image restoration through thin turbid layers by correlation with a known object. Opt. Express, 21, 12539-12545(2013).

    [12] W. Yang, G. Li, G. Situ. Imaging through scattering media with the auxiliary of a known reference object. Sci. Rep., 8, 9614(2018).

    [13] A. Boniface, J. Dong, S. Gigan. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun., 11, 6154(2020).

    [14] L. Zhu et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun., 13, 1447(2022).

    [15] P. L. Hong. Two-photon imaging assisted by a thin dynamic scattering layer. Appl. Phys. Lett., 113, 101109(2018).

    [16] Y. Sun et al. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 27, 16032-16046(2019).

    [17] S. S. Zheng et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photonics Res., 9, B220-B228(2021).

    [18] M. J. Stephen, G. Cwilich. Intensity correlation functions and fluctuations in light scattered from a random medium. Phys. Rev. Lett., 59, 285-287(1987).

    [19] S. Feng et al. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834-837(1988).

    [20] I. I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [21] J. Bertolotti et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [22] O. Katz et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [23] W. Li et al. Single-shot imaging through scattering media under strong ambient light interference. Opt. Lett., 46, 4538-4541(2021).

    [24] H. L. Liu et al. Alternative interpretation of speckle autocorrelation imaging through scattering media. Photonic Sens., 12, 220308(2022).

    [25] E. Edrei, G. Scarcelli. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica, 3, 71-74(2016).

    [26] H. Zhuang et al. High speed color imaging through scattering media with a large field of view. Sci. Rep., 6, 32696(2016).

    [27] X. Xie et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci. Rep., 8, 4585(2018).

    [28] J. P. Xie et al. Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer. J. Opt., 21, 085606(2019).

    [29] N. Antipa et al. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5, 1-9(2018).

    [30] J. Rosen, D. Abookasis. Noninvasive optical imaging by speckle ensemble. Opt. Lett., 29, 253-255(2004).

    [31] N. T. Shaked, Y. Yitzhaky, J. Rosen. Incoherent holographic imaging through thin turbulent media. Opt. Commun., 282, 1546-1550(2009).

    [32] D. Tang et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing. Appl. Opt., 57, 7533-7538(2018).

    [33] M. Chen et al. Expansion of the FOV in speckle autocorrelation imaging by spatial filtering. Opt. Lett., 44, 5997-6000(2019).

    [34] X. Wang et al. Prior-information-free single-shot scattering imaging beyond the memory effect. Opt. Lett., 44, 1423-1426(2019).

    [35] C. F. Guo et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Opt. Commun., 434, 203-208(2019).

    [36] I. Freund. Looking through walls and around corners. Phys. A: Stat. Mech. Appl., 168, 49-65(1990).

    [37] X. Gan, M. Gu. Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media. Opt. Lett., 24, 741-743(1999).

    [38] H. L. Liu et al. Physical picture of the optical memory effect. Photonics Res., 7, 1323-1330(2019).

    [39] M. J. Purcell et al. Holographic imaging through a scattering medium by diffuser-aided statistical averaging. J. Opt. Soc. Am. Opt. Image Sci. Vis., 33, 1291-1297(2016).

    [40] G. Osnabrugge et al. Generalized optical memory effect. Optica, 4, 886-892(2017).

    [41] Y. Q. Ji et al. Non-uniformity correction of wide field of view imaging system. Opt. Express, 30, 22123-22134(2022).

    [42] Y. Yuan, H. Chen. Dynamic noninvasive imaging through turbid media under low signal-noise-ratio. New J. Phys., 22, 093046(2020).

    [43] T. F. Lu et al. Non-invasive imaging through dynamic scattering layers via speckle correlations. Opt. Rev., 28, 557-563(2021).

    [44] S. Lowenthal, D. Joyeux. Speckle removal by a slowly moving diffuser associated with a motionless diffuser. J. Opt. Soc. Am., 61, 847-851(1971).

    [45] Y. Kuratomi et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser. J. Opt. Soc. Am. Opt. Image Sci. Vis., 27, 1812-1817(2010).

    [46] S. Kubota, J. W. Goodman. Very efficient speckle contrast reduction realized by moving diffuser device. Appl. Opt., 49, 4385-4391(2010).

    [47] M. M. Qureshi et al. In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomed. Opt. Express, 8, 4855-4864(2017).

    [48] X. Xu et al. Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function. Opt. Express, 25, 32829-32840(2017).

    Yuyang Shui, Ting Wang, Jianying Zhou, Xin Luo, Yikun Liu, Haowen Liang. Scattered light imaging beyond the memory effect using the dynamic properties of thick turbid media[J]. Advanced Photonics Nexus, 2023, 2(2): 026010
    Download Citation