• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 1, 2 (2020)
Zengfeng DU1、2、*, Xin ZHANG1、2、3, and Ronger ZHENG4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.01.001 Cite this Article
    DU Zengfeng, ZHANG Xin, ZHENG Ronger. Research Progress and Prospect of Laser Raman Spectroscopy forIn-situ Detection in Deep Ocean[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2 Copy Citation Text show less
    References

    [1] Lu Tongxing, Lu Yiqun. Principle and Application of Laser Spectroscopy[M]. Hefei: Press of University of Science and Technology of China, 2009 (in Chinese).

    [2] Du Zengfeng. Detection of Acid Radical Ions with DOCARS and LCOF-Raman System and Spectral Analysis of Sediment Pore Water[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2015 (in Chinese).

    [3] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New Jersey: John Wiley & Sons, 2008, 93-101.

    [4] Cox A J, DeWeerd A J, Linden J. An experiment to measure Mie and Rayleigh total scattering cross sections[J]. American Journal of Physics, 2002, 70(6): 620-625.

    [5] Zhang Mingsheng. Laser Light Scattering Spectroscopy[M]. Beijing: Science Press, 2008 (in Chinese).

    [6] Zhang Shulin. Raman Spectroscopy and Low Ninameter Semiconductors[M]. Beijing: Science Press, 2008 (in Chinese).

    [7] Gauglitz G, Vo-Dinh T. Handbook of Spectroscopy[M]. New Jersey: John Wiley & Sons, 2006.

    [8] Smith E, Dent G. Modern Raman Spectroscopy: a Practical Approach[M]. New Jersey: John Wiley & Sons, 2013.

    [9] McCreery R L. Raman Spectroscopy for Chemical Analysis[M]. New Jersey: John Wiley & Sons, 2005.

    [10] Zhu Ziying, Gu Renao, Lu Tianhong. Application of Raman Spectroscopy in Chemistry[M]. Shenyang: Northeastern University Press, 1998 (in Chinese).

    [11] Colthup N. Introduction to Infrared and Raman Spectroscopy[M]. Amsterdam: Elsevier, 2012.

    [12] Grasselli J G, Bulkin B J. Analytical Raman Spectroscopy[M]. New Jersey: Wiley, 1991.

    [13] Placzek G. Handbuch der Radiologie, edited by Marx E.[J]. Nature, 1934, (2): 205.

    [14] Pelletier M J. Analytical Applications of Raman Spectroscopy[M]. New Jersey: Wiley-Blackwell, 1999.

    [15] Gallagher A, Brewer P G, Peltzer E T, et al. Searching for CO2 in marine seiment pore waters: Methods and detection limits using laser Raman spectroscopy[J]. In MBARI report, 2012.

    [16] Dunk R M, Peltzer E T, Walz P M, et al. Seeing a deep ocean CO2 enrichment experiment in a new light: laser Raman detection of dissolved CO2 in seawater[J]. Environmental Science & Technology, 2005, 39(24): 9630-9636.

    [17] Hutchinson E J, Shu D, Laplant F, et al. Measurement of fluid film thickness on curved surfaces by Raman Spectroscopy[J]. Applied spectroscopy, 1995, 49(9): 1275-1278.

    [18] Kontoyannis C G, Bouropoulos N C, Koutsoukos P G. Use of Raman spectroscopy for the quantitative analysis of calcium oxalate hydrates: application for the analysis of urinary stones[J]. Applied Spectroscopy, 1997, 51(1): 64-67.

    [19] Lu W, Chou I M, Burruss R C. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 412-422.

    [20] Lu W, Chou I M, Burruss R C, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 3969-3978.

    [21] Wang X, Wang X, Chou I M, et al. Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characterization of Li2O-SO3-H2O (D2O) systems at temperatures up to 420℃[J]. Chemical Geology, 2017, 451: 104-115.

    [22] Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer for deep-ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(5): 739-753.

    [23] Du Z, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in-situ detection of acid radical ions[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545-550.

    [24] Zhang X, Du Z, Zheng R, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 1-12.

    [25] Dalian Institute of Chemical Physics, Chinese Academy of Sciences. The successful sea trial of the first UV laser Raman spectrometer for in situ detection in deep ocean[EB-OL]. (2007-04-04)[2019-12-09]. http://www.dicp.cas.cn/xwdt/kyjz/201811/t20181119-5187722.html (in Chinese).

    [26] Lehaitre M, Charlou J L, Donval J P, et al. Raman spectroscopy: New perspectives for in situ shallow or deep ocean exploration[C]//Geophys. Res. Abstr. 2005, 7: 03032.

    [27] Schmidt H, Ha N B, Pfannkuche J, et al. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS)[J]. Marine Pollution Bulletin, 2004, 49(3): 229-234.

    [28] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 22(4677): 965-967.

    [29] Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence[J]. Frontiers in Marine Science, 2016, 3: 72.

    [30] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626.

    [31] Niemann H, Lsekann T, de Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858.

    [32] Pasteris J, Wopenka B, Freeman J J, et al. Raman spectroscopy in the deep ocean: successes and challenges[J]. Applied Spectroscopy, 2004, 58(7): 195A-208A.

    [33] White S N, Dunk R M, Peltzer E T, et al. In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge)[J]. Geochemistry Geophysics Geosystems, 2006, 7(5): Q05023.

    [34] Zhang X, Walz P M, Kirkwood W J, et al. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(2): 297-306.

    [35] Zhang X, Hester K C, Ussler W, et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments[J]. Geophysical Research Letters, 2011, 38(38): 134-144.

    [36] Xi Shichuan, Zhang Xin, DuZengfeng et al. A method based on Raman shift of sulfate for detection of the deep-sea hydrothermal fluid temperature[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 76-80 (in Chinese).

    [37] Li L, Zhang X, Luan Z, et al. In situ quantitative Raman detection of dissolved carbon dioxide and sulfate in deep-sea high-temperature hydrothermal vent fluids[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(6): 1809-1823.

    [38] Li L, Zhang X, Luan Z, et al. Raman vibrational spectral characteristics and quantitative analysis of H2 up to 400℃ and 40 MPa[J]. Journal of Raman Spectroscopy, 2018, 49(10): 1722-1731.

    [39] Xi S, Zhang X, Luan Z, et al. A direct quantitative Raman method for the measurement of dissolved bisulfate in acid-Sulfate fluids[J]. Applied Spectroscopy, 2018, 72(8): 1234-1243.

    [40] Li L, Zhang X, Luan Z, et al. A new approach to measuring the temperature of fluids reaching 300° and 2 mol/kg NaCl based on the Raman shift of water[J]. Applied Spectroscopy, 2018, 72(11): 1621-1631.

    [41] Du Z, Zhang X, Luan Z, et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2049-2061.

    [42] Fan F, Feng Z, Li C. UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves[J]. Chemical Society Reviews, 2010, 39(12): 4794-4801.

    [43] Kvenvolden K A. Gas hydrates—geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187.

    [44] Lu H, Seo Y, Lee J, et al. Complex gas hydrate from the Cascadia margin[J]. Nature, 2007, 445(7125): 303-306.

    [45] Sloan Jr E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 42(6964): 353-359.

    [46] Fisher C R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates[J]. Reviews in Aquatic Sciences, 1990, 2: 399-436.

    [47] Du Z, Zhang X, Xi S, et al. In situ Raman spectroscopy study of synthetic gas hydrate formed by cold seep flow in the South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 197-206.

    [48] Brewer P G, Orr F M, Friederich G, et al. Gas hydrate formation in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon dioxide[J]. Energy & Fuels, 1998, 12(1): 183-188.

    [49] Hester K C, Dunk R M, Walz P M, et al. Direct measurements of multi-component hydrates on the seafloor: pathways to growth[J]. Fluid Phase Equilibria, 2007, 261(1-2): 396-406.

    [50] Hester K C, White S N, Peltzer E T, et al. Raman spectroscopic measurements of synthetic gas hydrates in the ocean[J]. Marine Chemistry, 2006, 98(2-4): 304-314.

    [51] Hester K C, Dunk R M, White S N, et al. Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2947-2959.

    [52] Zhang X, Du Z, Luan Z, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713.

    [53] White S N. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals[J]. Chemical Geology, 2009, 259(3-4): 240-252.

    [54] Xi S, Zhang X, Du Z, et al. Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 207-224.

    DU Zengfeng, ZHANG Xin, ZHENG Ronger. Research Progress and Prospect of Laser Raman Spectroscopy forIn-situ Detection in Deep Ocean[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2
    Download Citation