[3] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
[4] Ahonen T, Hadid A, Pietikainen M. Face recognition with localbinary patterns[C]// The 8th European Conf. on Computer Vision, Prague, Czech Republic. Berlin, Heidelberg: Springer-Verlag, 2004: 469-481.
[5] Taigman Y, Yang M, Ranzato M, et al. DeepFace: closing the gap to human-level performance in face verification[C]// 2014 IEEE Conf. on Computer Vision and Pattern Recognition, 2014: 1701-1708.
[6] Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[C]// IEEE Conf. on Computer Vision and Pattern Recognition, 2015: 815-823.
[7] Liu W Y, Wen Y D, Yu Z D, et al. SphereFace: Deep hypersphere embedding for face recognition[EB/OL]. (2018-01-29). https://arxiv.org/abs/1704.08063.
[8] Deng J, Guo J K, Xue N N, et al. ArcFace: Additive angular margin loss for deep face recognition[EB/OL]. (2019-02-09). https://arxiv.org/abs/1801.07698.
[9] Howard A G, Zhu M L, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17). https://arxiv.org/abs/1704.04861v1.
[10] Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017-10-07). http://https://arxiv.org/abs/1707.01083.
[11] Chen S, Liu Y, Gao X, et al. MobileFaceNets: Efficient CNNs for accurate real-time face verification on mobile devices[EB/OL]. (2018-06-15). https://arxiv.org/abs/1804.07573.
[12] Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[EB/OL]. (2019-03-21). https://arxiv.org/abs/1801.04381.
[13] Zhou D Q, Hou Q B, Chen Y P, et al. Rethinking bottleneck structure for efficient mobile network design[EB/OL]. (2020-11-27). https://arxiv.org/abs/2007.02269.
[14] Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multi-task cascaded convolutional networks[EB/OL]. (2016-04-11). https://arxiv.org/abs/1604.02878.