• Chinese Journal of Lasers
  • Vol. 44, Issue 9, 901008 (2017)
Fang Wenbing1、2、*, Zhao Bin3, Lin Haifeng1、2, Chen Weidong1, Li Bingxuan1, and Zhang Ge1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/CJL201744.0901008 Cite this Article Set citation alerts
    Fang Wenbing, Zhao Bin, Lin Haifeng, Chen Weidong, Li Bingxuan, Zhang Ge. Dual-Wavelength Nd∶Lu0.99La0.01VO4 Laser[J]. Chinese Journal of Lasers, 2017, 44(9): 901008 Copy Citation Text show less
    References

    [1] Weigi F. A generalized technique of two-wavelength, nondiffuse holographic interferometry[J]. Applied Optics, 10, 187-192(1971). http://www.ncbi.nlm.nih.gov/pubmed/20094415

    [2] Farley R W, Dao P D. Development of anintracavity-summed multiple-wavelength Nd-YAG laser for a rugged, solid-state sodium lidar system[J]. Applied Optics, 34, 4269-4273(1995). http://www.ncbi.nlm.nih.gov/pubmed/21052256

    [3] Son S N, Song J J, Kang J U et al. Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing[J]. Sensors, 11, 6125-6130(2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231447/

    [4] Mu Zhiming, Yang Jichun, Dong Xiaoxi et al. Research of pain stimulus induced by dual-wavelength infrared laser system[J]. Chinese J Lasers, 42, 0104002(2015).

    [6] Shi W, Ding Y J, Fernelius N et al. Efficient, tunable, and coherent 0.18~5.27 THz source based on GaSe crystal[J]. Optics Letters, 27, 1454-1456(2002). http://europepmc.org/abstract/MED/18026477

    [7] Zhao P, Ragam S, Ding Y J et al. Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser[J]. Optics Letters, 35, 3979-3981(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5950235

    [8] Zhao P, Ragam S, Ding Y J et al. Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers[J]. Applied Physics Letters, 98, 1311006(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5740737

    [9] Willer U, Wilk R, Schippers W et al. A novel THz source based on a two-color Nd∶LSB microchip-laser and a LT-GaAsSb photomixer[J]. Applied Physics B, 87, 13-16(2007). http://link.springer.com/article/10.1007/s00340-006-2492-7

    [10] Wang Feng, Bi Weihong, Fu Xinghu et al. Dual-wavelength fiber laser based on Er 3+-doped superimposed fiber gratings [J]. Chinese J Lasers, 43, 0402002(2016).

    [11] Luo C W, Yang Y Q, Mak I T et al. A widely tunable dual-wavelength CW Ti∶sapphire laser with collinear output[J]. Optics Express, 16, 3305-3309(2008). http://www.ncbi.nlm.nih.gov/pubmed/18542419

    [12] Akbari R, Zhao H T, Major A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb∶KGW laser[J]. Optics Letters, 41, 1601-1604(2016). http://www.ncbi.nlm.nih.gov/pubmed/27192297

    [13] Tzeng Y S, Huang Y J, Tang C Y et al. High-power tunable single- and multi-wavelength diode-pumped Nd∶YAP laser in the 4F3/2 → 4I11/2 transition[J]. Optics Express, 21, 26261-26268(2013). http://www.ncbi.nlm.nih.gov/pubmed/24216850

    [14] Huang Y J, Tzeng Y S, Tang C Y et al. Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media[J]. Optics Letters, 39, 1477-1480(2014). http://europepmc.org/abstract/med/24690817

    [15] Zhuang W Z, Chang M T, Su K W et al. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb∶YAG laser[J]. Laser Physics, 23, 075803(2013). http://adsabs.harvard.edu/abs/2013LaPhy..23g5803Z

    [16] Huang Y J, Tang C Y, Lee W L et al. Efficient passively Q-switched Nd∶YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence[J]. Applied Physics B, 108, 313-317(2012).

    [17] Cho C Y, Huang T L, Wen S M et al. Nd∶YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm[J]. Optics Express, 22, 25318-25323(2014). http://europepmc.org/abstract/med/25401565

    [18] Pallas F, Herault E, Zhou J et al. Stable dual-wavelength microlaser controlled by the output mirror tilt angle[J]. Applied Physics Letters, 99, 241113(2011). http://scitation.aip.org/content/aip/journal/apl/99/24/10.1063/1.3669530

    [19] Zhao H, Major A. Orthogonally polarized dual-wavelength operation of a CW Yb∶KGW laser induced by thermal lensing[C]. CLEO: Science and Innovations, CTh4I, 2(2013).

    [20] Alombert-Goget G, Brenier A, Guyot Y et al. Thermally driven dual-frequency Q-switching of Nd∶YGd2Sc2Al2GaO12 ceramic laser[J]. Optics Express, 22, 10792-10799(2014).

    [21] Chen Y F. CW dual-wavelength operation of a diode-end-pumped Nd∶YVO4 laser[J]. Applied Physics B, 70, 475-478(2000). http://link.springer.com/article/10.1007/s003400050847

    [22] Chen Y F, Ku M L, Su K W. High-power efficient tunable Nd:GdVO4 laser at 1083 nm[J]. Optics Letters, 30, 2107-2109(2005). http://europepmc.org/abstract/MED/16127925

    [23] Huang Y P, Cho C Y, Huang Y J et al. Orthogonally polarized dual-wavelength Nd∶LuVO4 laser at 1086 nm and 1089 nm[J]. Optics Express, 20, 5644-5651(2012). http://europepmc.org/abstract/MED/22418372

    [24] Vlasov V I, Garnov S V, Zavartsev Y D et al. New possibilities of neodymium-doped vanadate crystals as active media for diode-pumped lasers[J]. Quantum Electronics, 37, 938-940(2007).

    [25] Ostroumov V G, Huber G, Zagumennyi A I et al. Spectroscopic properties and lasing of Nd∶Gd0.5La0.5VO4 crystals[J]. Optics Communications, 124, 63-68(1996).

    [26] Xu H H, Han S, Yu H H et al. Thermal, spectral and laser characteristics of Nd doped La0.05Lu0.95VO4 crystal[J]. Journal of Crystal Growth, 387, 66-72(2014). http://www.sciencedirect.com/science/article/pii/S0022024813006908

    [27] Xu H H, Yu H H, Wang Z P et al. Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal[J]. Optics Express, 20, 16524-16531(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-15-16524

    [28] Zhuo Z, Li T, Li S G et al. A new composite YVO4/Nd∶Y0.9La0.1VO4 crystal laser end-pumped with a fiber coupled diode array[J]. Laser Physics Letters, 6, 445-449(2009). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200910015/citedby

    [29] Han S, Li X L, Xu H H et al. Graphene Q-switched 0.9-μm Nd∶La0.11Y0.89YO4 laser[J]. Chinese Optics Letters, 12, 011401(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ131231000024dKgMjP

    [30] Xu H H, Zhang H J, Yu H H et al. Passive mode-locking performance of mixed Nd∶La0.11Y0.89VO4 crystal[J]. Optics Express, 22, 5350-5356(2014).

    [31] Wang C Q, Zhang H J, Chow Y T et al. Spectroscopic and laser properties of Nd∶Gd0.8La0.2VO4 crystal[J]. Optics and Laser Technology, 33, 439-442(2001).

    [32] Han S, Xu H H, Zhao Y G et al. The 4F3/2→ 4I 13/2 transition property of Nd∶La0.05Lu0.95VO4 crystal [J]. Laser Physics, 23, 105384(2013).

    [33] Han S, Xu H H, Zhao Y G et al. 1.34 μm fluorescence and laser properties of Nd∶La0.11Y0.89VO4 crystal[J]. Infrared Physics & Technology, 60, 66-70(2013).

    [34] Wang Y, Zhao B, Zhuo Z et al. Fluorescence spectrum, thermal properties, and continuous-wave laser performance of the mixed crystal Nd:Lu0.99La0.01VO4[J]. Chinese Optics Letters, 11, 121404(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ131213000104LiOlRn

    [35] Huang G X, Zhao B, Yu Y Q et al. Continuous-wave and Q-switched laser performance of Nd∶Lu0.99La0.01VO4 mixed crystals at 1.06 μm[J]. Optics Communications, 285, 5375-5377(2012).

    [36] Shayeganrad G, Huang Y C, Mashhadi L. Tunable single and multiwavelength continuous-wave c-cut Nd∶YVO4 laser[J]. Applied Physics B, 108, 67-72(2012). http://link.springer.com/article/10.1007/s00340-012-4958-0

    [37] Sirotkin A A, Garnov S V, Zagumennyi A I et al. Diode-pumped two-frequency lasers based on c-cut vanadate crystals[J]. Quantum Electronics, 39, 802-806(2009). http://www.mathnet.ru/eng/qe14067

    [38] Sirotkin A A, Garnov S V, Zagumennyi A I et al. New lasers based on c-cut vanadat crystals[J]. Laser Physics, 19, 1083-1091(2009). http://link.springer.com/article/10.1134/S1054660X09050363

    [39] Zhao S R, Zhang H J, Lu Y B et al. Spectroscopic characterization and laser performance of Nd∶LuVO4 single crystal[J]. Optical Materials, 28, 950-955(2006). http://www.sciencedirect.com/science/article/pii/S0925346705002090

    [40] Andreeta M R B, Nunes L A O et al. Transparent and inclusion-free RE1-xLaxVO4 (RE=Gd, Y) single crystal fibers grown by LHPG technique[J]. Journal of Crystal Growth, 291, 117-122(2006). http://www.sciencedirect.com/science/article/pii/S0022024806001928

    [41] Findlay D, Clay R A. The measurement of internal losses in 4-level lasers[J]. Physics Letters, 20, 277-278(1966). http://www.sciencedirect.com/science/article/pii/0031916366903635

    [42] Chen L, Wang Z, Zhuang S et al. Dual-wavelength Nd∶YAG crystal laser at 1074 and 1112 nm[J]. Optics Letters, 36, 2554-2556(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-13-2554

    Fang Wenbing, Zhao Bin, Lin Haifeng, Chen Weidong, Li Bingxuan, Zhang Ge. Dual-Wavelength Nd∶Lu0.99La0.01VO4 Laser[J]. Chinese Journal of Lasers, 2017, 44(9): 901008
    Download Citation