• Chinese Journal of Lasers
  • Vol. 44, Issue 1, 102004 (2017)
Cao Xiaowen1、*, Zhang Lei1, Yu Yongsen2, and Chen Qidai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201744.0102004 Cite this Article Set citation alerts
    Cao Xiaowen, Zhang Lei, Yu Yongsen, Chen Qidai. Application of Micro-Optical Components Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 102004 Copy Citation Text show less
    References

    [1] Revzin A, Russell R J, Yadavalli V K et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography[J]. Langmuir, 17, 5440-5447(2001). http://pubs.acs.org/doi/abs/10.1021/la010075w

    [2] Cox J A. Application of diffractive optics to infrared imagers[C]. SPIE, 2550, 304-312(1995).

    [3] Pease R F W. Electron beam lithography[J]. Contemporary Physics, 22, 265-290(1981).

    [4] Vieu C, Carcenac F, Pepin A et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 164, 111-117(2000). http://www.sciencedirect.com/science/article/pii/S0169433200003524

    [5] Lin X F, Chen Q D, Niu L G et al. Mask-free production of integratable monolithic micro logarithmic axicon lenses[J]. Journal of Lightwave Technology, 28, 1256-1260(2010). http://ieeexplore.ieee.org/document/5423991/

    [6] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000004000009000030000001&idtype=cvips&gifs=Yes

    [7] Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2, 100-111(2008). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200710039/pdf

    [8] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl Phys Lett, 80, 312-314(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4865850

    [9] Tan D, Li Y, Qi F et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Appl Phys Lett, 90, 071106(2007). http://scitation.aip.org/content/aip/journal/apl/90/7/10.1063/1.2535504

    [10] Gan Z, Cao Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013). http://www.nature.com/doifinder/10.1038/ncomms3061

    [12] Joglekar A P, Liu H H, Meyhöfer E et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 5856-5861(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000003000005000096000001&idtype=cvips&gifs=Yes

    [13] Cheng Y, Tsai H L, Sugioka K et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Appl Phys A, 85, 11-14(2006). http://link.springer.com/article/10.1007/s00339-006-3672-3

    [14] Qiao L, He F, Wang C et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining[J]. Appl Phys A, 102, 179-183(2010). http://link.springer.com/article/10.1007/s00339-010-6096-z

    [15] Qiao L, He F, Wang C et al. Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues[J]. Opt Commun, 284, 2988-2991(2011). http://www.sciencedirect.com/science/article/pii/S0030401811001404

    [16] Zheng C, Hu A M, Kihm K D et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a pmma substrate for super-wide angle imaging[J]. Small, 11, 3007-3016(2015). http://onlinelibrary.wiley.com/doi/10.1002/smll.201403419/pdf

    [17] Antipov S, Baryshev S V, Butler J E et al. Single-crystal diamond refractive lens for focusing X-Rays in two dimensions[J]. Journal of Synchrotron Radiation, 23, 163-168(2016). http://europepmc.org/articles/PMC4932872/

    [18] Xu J J, Yao W G, Tian Z N et al. High curvature concave-convex microlens[J]. IEEE Photonics Technol Lett, 27, 2465-2468(2015). http://ieeexplore.ieee.org/document/7244205/

    [19] Lu D X, Zhang Y L, Han D D et al. Solvent-tunable pdms microlens fabricated by femtosecond laser direct writing[J]. J Mater Chem C, 3, 1751-1756(2015). http://www.ingentaconnect.com/content/rsoc/20507526/2015/00000003/00000008/art00020

    [20] Karp J H, Tremblay E J, Ford J E. Planar micro-optic solar concentrator[J]. Opt Express, 18, 1122-1133(2010). http://www.ncbi.nlm.nih.gov/pubmed/20173935

    [21] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3d artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).

    [22] Chen F, Liu H, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt Express, 18, 20334-20343(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-20334

    [23] Qu P, Chen F, Liu H et al. A simple route to fabricate artificial compound eye structures[J]. Opt Express, 20, 5775-5782(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-5-5775

    [24] Bian H, Yang Q, Chen F et al. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process[J]. Materials Science and Engineering: C, 33, 2795-2799(2013). http://www.ncbi.nlm.nih.gov/pubmed/23623098

    [25] Deng Z, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technol Lett, 26, 2086-2089(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6881666

    [26] Meng X, Chen F, Yang Q et al. Simple fabrication of closed-packed ir microlens arrays on silicon by femtosecond laser wet etching[J]. Appl Phys A, 121, 157-162(2015). http://link.springer.com/article/10.1007/s00339-015-9402-y

    [27] Hu Y, Chen Y, Ma J et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Appl Phys Lett, 103, 141112(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6619350

    [28] Tian Z N, Yao W G, Xu J J et al. Focal varying microlens array[J]. Opt Lett, 40, 4222-4225(2015).

    [29] Bricchi E, Mills J D, Kazansky P G et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt Lett, 27, 2200-2202(2002). http://www.opticsinfobase.org/abstract.cfm?id=70784

    [30] Kim J K. Kim J Oh K, et al. Fabrication of micro fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system[J]. IEEE Photonics Technol Lett, 21, 21-23(2009). http://ieeexplore.ieee.org/document/4738469/

    [31] Kim J, Ha W, Park J et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed Laser[J]. IEEE Photonics Technol Lett, 25, 761-763(2013). http://ieeexplore.ieee.org/document/6472021/

    [32] Komlenok M S, Volodkin B O, Knyazev B A et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J]. Quantum Electron, 45, 933-936(2015). http://www.mathnet.ru/eng/qe16266

    [33] Li Q K, Yu Y H, Wang L et al. Sapphire-based fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technol Lett, 28, 1290-1293(2016). http://ieeexplore.ieee.org/document/7426361/

    [34] Niu L G, Wang D, Jiang T et al. High fill-factor multilevel fresnel zone plate arrays by femtosecond laser direct writing[J]. Opt Commun, 284, 777-781(2011). http://www.sciencedirect.com/science/article/pii/S0030401810010345

    [35] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014). http://www.nature.com/lsa/journal/v3/n1/abs/lsa201410a.html

    [36] Chen Q D, Lin X F, Niu L G et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 33, 2559-2561(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000007000012000001000001&idtype=cvips&gifs=Yes

    [37] Zhou K, Guo Z, Ding W et al. Analysis on volume grating induced by femtosecond laser pulses[J]. Opt Express, 18, 13640-13646(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-13-13640

    [38] Yu X, Yao B, Lei M et al. Polarization-sensitive diffractive optical elements fabricated in br films with femtosecond laser[J]. Appl Phys B, 115, 365-369(2014). http://link.springer.com/article/10.1007/s00340-013-5611-2

    [39] Xiao T P, Cifci O S, Bhargava S et al. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3d direct laser writing[J]. ACS Photonics, 3, 886-894(2016). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00066

    [40] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 21, 1729-1731(1996). http://www.opticsinfobase.org/abstract.cfm?id=45187

    [41] Fletcher L B, Witcher J J, Troy N et al. Direct femtosecond laser waveguide writing inside zinc phosphate glass[J]. Opt Express, 19, 7929-7936(2011). http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-9-7929

    [42] Okhrimchuk A, Mezentsev V, Shestakov A et al. Low loss depressed cladding waveguide inscribed in YAG∶Nd single crystal by femtosecond laser pulses[J]. Opt Express, 20, 3832-3843(2012). http://www.ncbi.nlm.nih.gov/pubmed/22418140

    [43] Sakakura M, Sawano T, Shimotsuma Y et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Opt Express, 18, 12136-12143(2010). http://www.ncbi.nlm.nih.gov/pubmed/20588336

    [44] He R, Hernández-Palmero I, Romero C et al. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing[J]. Opt Express, 22, 31293-31298(2014). http://europepmc.org/abstract/med/25607077

    [45] Sun Y L, Sun S M, Zheng B Y et al. Protein-based multi-mode interference optical micro-splitters[J]. IEEE Photonics Technol Lett, 28, 629-632(2016). http://ieeexplore.ieee.org/document/7336503/

    [46] Li B, Jiang L, Wang S et al. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Opt Laser Technol, 43, 1420-1423(2011). http://www.sciencedirect.com/science/article/pii/S0030399211000983

    [47] Chen C, Yu Y S, Yang R et al. Reflective optical fiber sensors based on tilted fiber bragg gratings fabricated with femtosecond laser[J]. Journal of Lightwave Technology, 31, 455-460(2013). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-31-3-455

    [48] Cui W, Si J, Chen T et al. Compact bending sensor based on a fiber bragg grating in an abrupt biconical taper[J]. Opt Express, 23, 11031-11036(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-9-11031

    [49] Duan J, Xie Z, Wang C et al. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber[J]. Opt Laser Technol, 83, 94-98(2016). http://www.sciencedirect.com/science/article/pii/S0030399215304023

    [50] Lin J, Yu S, Ma Y et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Opt Express, 20, 10212-10217(2012). http://europepmc.org/abstract/MED/22535112

    [51] Lin J, Xu Y, Song J et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd∶glass substrate by three-dimensional femtosecond laser micromachining[J]. Opt Lett, 38, 1458-1460(2013). http://www.ncbi.nlm.nih.gov/pubmed/23632517

    [52] Ku J F, Chen Q D, Ma X W et al. Photonic-molecule single-mode laser[J]. IEEE Photonics Technol Lett, 27, 1157-1160(2015). http://ieeexplore.ieee.org/document/7061461/

    [53] Huang Q, Zhan X, Hou Z et al. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing[J]. Opt Commun, 362, 73-76(2016). http://www.sciencedirect.com/science/article/pii/S0030401815300110

    [54] Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication[J]. Opt Lett, 36, 2302-2304(2011). http://www.ncbi.nlm.nih.gov/pubmed/21686000

    [55] Li Q S. W L J, Tian Z N, et al. Direct integration of aspherical microlens on vertical-cavity surface emitting laser emitting surface for beam shaping[J]. Opt Commun, 300, 269-273(2013). http://www.sciencedirect.com/science/article/pii/S003040181300285X

    [56] Lü Chao, Xia H, Guan W et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems[J]. Scientific Reports, 6, 19801(2016). http://europepmc.org/abstract/MED/26823292

    [57] Choi J, Ramme M, Richardson M. Directly laser-written integrated photonics devices including diffractive optical elements[J]. Opt Lasers Eng, 83, 66-70(2016). http://www.sciencedirect.com/science/article/pii/S0143816616000658

    [58] Crespi A, Ramponi R, Osellame R et al. Integrated photonic quantum gates for polarization qubits[J]. Nature Communications, 2, 566(2011). http://www.ncbi.nlm.nih.gov/pubmed/22127062

    [59] Corrielli G, Crespi A, Geremia R et al. Rotated waveplates in integrated waveguide optics[J]. Nature Communications, 5, 4249(2014). http://www.ncbi.nlm.nih.gov/pubmed/24963757

    [60] Della Valle G, Taccheo S, Osellame R et al. 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing[J]. Opt Express, 15, 3190-3194(2007). http://www.ncbi.nlm.nih.gov/pubmed/19532557/

    [61] Ams M, Dekker P, Marshall G D et al. Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique[J]. Opt Lett, 34, 247-249(2009). http://www.opticsinfobase.org/abstract.cfm?uri=ol-34-3-247

    [62] Cheng Y, Sugioka K, Midorikawa K et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Opt Lett, 28, 1144-1146(2003). http://www.ncbi.nlm.nih.gov/pubmed/12879935

    [63] Wu D, Chen Q D, Niu L G et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 9, 2391-2394(2009). http://europepmc.org/abstract/med/19636471

    [64] Kato J, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl Phys Lett, 86, 044102(2005). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1063/1.1855404

    [65] Juodkazis S, Mizeikis V, Misawa H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications[J]. J Appl Phys, 106, 051101(2009). http://scitation.aip.org/content/aip/journal/jap/106/5/10.1063/1.3216462

    Cao Xiaowen, Zhang Lei, Yu Yongsen, Chen Qidai. Application of Micro-Optical Components Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 102004
    Download Citation