• Optical Instruments
  • Vol. 45, Issue 2, 46 (2023)
Bing WANG, Qi HU*, and Yalin BIAN
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2023.002.006 Cite this Article
    Bing WANG, Qi HU, Yalin BIAN. An image semantic segmentation algorithm with a two-branch structure[J]. Optical Instruments, 2023, 45(2): 46 Copy Citation Text show less
    Dense module structure
    Fig. 1. Dense module structure
    Two-branch network structure
    Fig. 2. Two-branch network structure
    Visualization of different structures
    Fig. 3. Visualization of different structures
    Visualization of the proposed algorithm
    Fig. 4. Visualization of the proposed algorithm
    数据集批处理 大小 初始 学习率 权重衰减 系数 裁剪 大小 优化 函数
    Cityscapes100.010.00051024×1024SGD
    CamVid80.0010.0001480×360Adam
    Table 1. Experimental parameter settings
    MethodmIoU/%Parameters/106
    baseline57.611.8
    CB59.412.7
    CB+DB(sum)61.513.1
    CB+DB(FM)62.513.3
    Table 2. Ablation experiment results
    算法预训练主干网络分辨率均交并比/%参数量/106
    SegNetYesVGG16360×64056.129.5
    ENetNoNo512×102458.30.4
    SQYesSqueezeNet[24]1024×204859.8
    FRRN ANoNo256×51263.017.7
    DeepLabYesVGG16512×102463.137.3
    FCN-8sVGG161024×204865.3134.5
    Dilation10YesVGG161024×204867.1
    DeepLabv2YesResNet1011024×204870.444.0
    RefineNet-LWYesResNet10172.146.0
    RefineNetResNet1011024×204873.6118.0
    OursNoResNet181024×204867.413.3
    Table 3. Segmentation accuracy of different algorithms on the Cityscapes test set
    MethodDeconvNetENetSegNetFCN-8sBiSeNet文献[26] Ours
    Building74.788.877.883.075.8
    Tree77.887.371.075.866.6
    Sky95.192.488.792.089.5
    Car82.482.176.183.777.0
    Sign51.020.532.746.535.1
    Road95.197.291.294.693.2
    Pedestrian67.257.141.758.839.6
    Fence51.749.324.453.626.9
    Pole35.427.519.931.917.0
    Sidewalk86.784.472.781.478.5
    Bicyclist34.130.731.054.044.5
    mIoU/%48.951.355.657.068.769.158.5
    Parameters/1062520.429.5134.549.062.013.3
    Table 4. Segmentation accuracy of different algorithms on the CamVid test set