• Acta Photonica Sinica
  • Vol. 47, Issue 6, 601003 (2018)
HU Xuan1、2、*, LI Dao-jing1, FU Han-chu2、3、4, and WEI Kai3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184706.0601003 Cite this Article
    HU Xuan, LI Dao-jing, FU Han-chu, WEI Kai. System Analysis of Ground-based Inverse Synthetic Aperture Lidar for Geosynchronous Orbit Object Imaging[J]. Acta Photonica Sinica, 2018, 47(6): 601003 Copy Citation Text show less
    References

    [1] GSCHWENDTNER A B, KEICHER W E. Development of coherent laser radar at lincoln laboratory[J].Lincoln Laboratory Journal, 2000,12(2): 383-394.

    [2] KRAUSE B W, BUCK J, RYAN C, et al. Synthetic aperture ladar flight demonstration[C]. Optical Society of America/Conference on Lasers and Electro-optics (OSA/CLEO), 2011.

    [3] CONTRACTS[EB/OL].[2018-01-04]http: //archive.defense.gov/Contracts/Contract.aspx ContractID=5140.

    [4] XING Meng-dao. Synthetic aperture ladar techniques research[R]. National High Technology Research and Development (863)Program Report, 2008.

    [5] LIU L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579-599.

    [6] LUAN Z, SUN J, ZHOU Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 2014, 12(11): 111101.

    [7] LI Dao-jing, DU Jian-bo, MA Meng, et al. The system analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engine, 2016, 45(11): 269-276.

    [8] GAO Yang-te, ZHAO Bing-ji. Distribution and moving characteristic analysis of space craps[C]. The second conference of national THz technology and application, 2016: 437-443.

    [9] LIAO Hui. Studies on the attitude determination and control system of an earth-oriented three-axis stabilized satellite[D]. Xi’an: Northwestern Polytechnical University, 2000: 51-112.

    [12] DU Jian-bo. Research on wideband signal generation and imaging processing technology for SAL[D]. Beijing: University of Chinese Academy of Scicences, 2017: 49-69.

    [14] HU Xuan, LI Dao-jing, TIAN He, et al. Impact and correction of phase error in ladar signal to synthetic aperture imaging[J]. Infrared and Laser Engine, 2018, 47(3): 0306001

    [15] HU Xuan, LI Dao-jing, ZHAO Xu-feng. One method to remain signal coherence in synthetic aperture ladar based on local oscillator digital delay[J]. Chinese Journal of Lasers, 2018,45(5): 0510003.

    [16] MA Meng, LI Dao-jing, DU Jian-bo. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5): 591-602.

    [17] DU Jian-bo, LI Dao-jing, MA Meng, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese Journal of Lasers, 2016, 43(9): 247-258.

    [18] MA Meng, LI Dao-jing. 3-D imaging for moving targets based on millimeter-wave InISAR with long orthogonal baselines[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 488-495.

    [19] HU Xuan, LI Dao-jing. Vibration estimation of synthetic aperture lidar based on division of inner view field by two detectors along track[C].IGARSS2016.

    [20] DAI Pin-juan, LIU Guo-guo, WU Jin. Numerical simulation on synthetic aperture ladar imaging through atmospheric turbulence with phase gradient algorithm compensation[J]. Acta Optica Sinica. 2010,30(3): 739-746.

    [21] JIANG Wen-hang. Adaptive optical technology[J]. Journal of Nature, 2006,28(1): 7-13.

    [22] CHEN Wen-chi, BAO Zheng, XING Meng-dao. Keystone transformation based ISAR imaging at the low SNR level[J]. Journal of XIDIAN University. 2003, 30(2): 155-159.

    HU Xuan, LI Dao-jing, FU Han-chu, WEI Kai. System Analysis of Ground-based Inverse Synthetic Aperture Lidar for Geosynchronous Orbit Object Imaging[J]. Acta Photonica Sinica, 2018, 47(6): 601003
    Download Citation