• Chinese Journal of Lasers
  • Vol. 47, Issue 5, 0500017 (2020)
Helong Li1、2, Siqi Wang1, Yao Fu1, and Huailiang Xu1、3、*
Author Affiliations
  • 1College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • 2Institute of Atomic and Molecular Physics, Jilin University, Changchun, Jilin 130012, China
  • 3Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL202047.0500017 Cite this Article Set citation alerts
    Helong Li, Siqi Wang, Yao Fu, Huailiang Xu. Air Lasing: Principle, Generation, and Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500017 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [3] Li R X, Leng Y X, Xu Z Z. Progress in superintense ultrafast lasers and their applications[J]. Physics, 44, 509-517(2015).

    [4] Yao J P, Chu W, Liu Z X et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 124, 73(2018).

    [5] Yuan L Q, Liu Y, Yao J P et al. Recent advances in air lasing: a perspective from quantum coherence[J]. Advanced Quantum Technologies, 2, 1970071(2019).

    [6] Li H L, Yao D W, Wang S Q et al. Air lasing: phenomena and mechanisms[J]. Chinese Physics B, 28, 114204(2019).

    [7] Chin S L. Femtosecond laser filamentation[M]. New York: Springer(2010).

    [8] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [9] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2010).

    [10] Liu Y, Chen Z S, Shi J M. Research progress on electromagnetic wave transmission via femtosecond-laser plasma channel[J]. Laser & Optoelectronics Progress, 56, 090002(2019).

    [11] Xu Q, Su Q, Lu D et al. Review of terahertz time-domain spectroscopy systems based on laser filament[J]. Chinese Journal of Lasers, 46, 0614010(2019).

    [12] Wang T J, Xu H L. Nonlinear frequency conversion in laser filamentation in air[J]. Progress in Physics, 38, 82-91(2018).

    [13] Couairon A, Mysyrowicz A. Femtosecond filamentation intransparent media[J]. Physics Reports, 441, 47-189(2007).

    [14] Chin S L, Wang T J, Marceau C et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 22, 1-53(2012).

    [15] Daigle J F, Kosareva O, Panov N et al. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams[J]. Optics Communications, 284, 3601-3606(2011).

    [16] Liu X L, Cheng W B, Petrarca M et al. Measurements of fluence profiles in femtosecond laser filaments in air[J]. Optics Letters, 41, 4751-4754(2016).

    [17] Yuan S, Chin S L, Zeng H P. Femtosecond filamentation induced fluorescence technique for atmospheric sensing[J]. Chinese Physics B, 24, 014208(2015).

    [18] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [19] Xu H L, Daigle J F, Luo Q et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane[J]. Applied Physics B, 82, 655-658(2006).

    [20] Li H L, Xu H L, Yang B S et al. Sensing combustion intermediates by femtosecond filament excitation[J]. Optics Letters, 38, 1250-1252(2013).

    [21] Zang H W, Li H L, Su Y et al. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament[J]. Optics Letters, 43, 615-618(2018).

    [22] Li H L, Zang H W, Xu H L et al. Robust remote sensing of trace-level heavy-metal contaminants in water using laser filaments[J]. Global Challenges, 3, 1800070(2019).

    [23] Fu Y, Hou M Y, Zang H W et al. Remote discrimination of willow, pine and poplar trees and their growing environments by femtosecond filament-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 155, 107-114(2019).

    [24] Hou M Y, Wang S Q, Yao D W et al. Effects of pulse duration and polarization on femtosecond filament-induced fluorescence of combustion intermediates[J]. Chinese Journal of Lasers, 46, 0508024(2019).

    [25] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B: Lasers and Optics, 76, 337-340(2003).

    [26] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).

    [27] Salamé R, Lascoux N, Salmon E et al. Propagation of laser filaments through an extended turbulent region[J]. Applied Physics Letters, 91, 171106(2007).

    [28] Méjean G, Kasparian J, Yu J et al. Multifilamentation transmission through fog[J]. Physical Review E, 72, 026611(2005).

    [29] Chu W, Li H L, Ni J L et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 104, 091106(2014).

    [30] Hosseini S, Azarm A, Daigle J F et al. Filament-induced amplified spontaneous emission in air-hydrocarbons gas mixture[J]. Optics Communications, 316, 61-66(2014).

    [31] Yuan S, Wang T J, Teranishi Y et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 102, 224102(2013).

    [32] Yuan S, Wang T J, Lu P F et al. Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy[J]. Applied Physics Letters, 104, 091113(2014).

    [33] Dogariu A, Michael J B, Scully M O et al. High-gain backward lasing in air[J]. Science, 331, 442-445(2011).

    [34] Laurain A, Scheller M, Polynkin P. Low-threshold bidirectional air lasing[J]. Physical Review Letters, 113, 253901(2014). http://www.ncbi.nlm.nih.gov/pubmed/25554881

    [35] Yao J P, Zeng B, Xu H L et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 84, 051802(2011).

    [36] Yao J P, Li G H, Jing C R et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New Journal of Physics, 15, 023046(2013).

    [37] Wang T J, Ju J J, Daigle J F et al. Self-seeded forward lasing action from a femtosecond Ti∶sapphire laser filament in air[J]. Laser Physics Letters, 10, 125401(2013).

    [38] Liu Y, Brelet Y, Point G et al. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses[J]. Optics Express, 21, 22791-22798(2013).

    [39] Li H L, Zang H W, Su Y et al. Generation of air lasing at extended distances by coaxial dual-color femtosecond laser pulses[J]. Journal of Optics, 19, 124006(2017).

    [40] Polynkin P, Cheng Y[M]. Air lasing(2018).

    [41] Talebpour A, Abdel-Fattah M, Bandrauk A D et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser Physics, 11, 68-76(2001).

    [42] Xu H L, Azarm A, Bernhardt J et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical Physics, 360, 171-175(2009).

    [43] Danylo R, Zhang X, Fan Z Q et al. Formation dynamics of excited neutral nitrogen molecules inside femtosecond laser filaments[J]. Physical Review Letters, 123, 243203(2019).

    [44] Kartashov D, Alisauskas S, Andriukaitis G et al. Free-space nitrogen gas laser driven by a femtosecond filament[J]. Physical Review A, 86, 033831(2012).

    [45] Mitryukovskiy S, Liu Y, Ding P J et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics Express, 22, 12750-12759(2014).

    [46] Li Z T, Chu W, Zeng B et al. Comparative investigations of the spontaneous and stimulated emissions from nitrogen molecules in air with femtosecond laser excitation pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 065602(2016).

    [47] Hemmer P R, Miles R B, Polynkin P et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 3130-3134(2011).

    [48] Sprangle P, Peñano J, Hafizi B et al. Remotely induced atmospheric lasing[J]. Applied Physics Letters, 98, 211102(2011).

    [49] Peñano J, Sprangle P, Hafizi B et al. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen[J]. Journal of Applied Physics, 111, 033105(2012).

    [50] Kartashov D, Shneider M N. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air[J]. Journal of Applied Physics, 121, 113303(2017).

    [51] Kocharovsky V, Cameron S, Lehmann K et al. Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 7806-7811(2005).

    [52] Kunabenchi R S, Gorbal M R, Savadatti M I. Nitrogen lasers[J]. Progress in Quantum Electronics, 9, 259-329(1984).

    [53] Xie H Q, Li G H, Chu W et al. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain[J]. New Journal of Physics, 17, 073009(2015).

    [54] Mitryukovskiy S, Liu Y, Ding P J et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 114, 063003(2015).

    [55] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 35, 31-53(2006).

    [56] Ding P J, Mitryukovskiy S, Houard A et al. Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK)[J]. Optics Express, 22, 29964-29977(2014).

    [57] Yao J P, Xie H Q, Zeng B et al. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses[J]. Optics Express, 22, 19005-19013(2014).

    [58] Ding P J, Oliva E, Houard A et al. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments[J]. Physical Review A, 94, 043824(2016).

    [59] Ding P J, Escudero J C, Houard A et al. Nonadiabaticity of cavity-free neutral nitrogen lasing[J]. Physical Review A, 96, 033810(2017).

    [60] Kartashov D, Alisauskas S, Baltuska A et al. Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen[J]. Physical Review A, 88, 041805(2013).

    [61] Ni J L, Chu W, Jing C R et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation[J]. Optics Express, 21, 8746-8752(2013).

    [62] Zhang H S, Jing C R, Li G H et al. Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field[J]. Physical Review A, 88, 063417(2013).

    [63] Zhang H S, Jing C R, Yao J P et al. Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field[J]. Physical Review X, 3, 041009(2013).

    [64] Li G H, Jing C R, Zeng B et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization[J]. Physical Review A, 89, 033833(2014).

    [65] Xie H Q, Zeng B, Li G H et al. Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules[J]. Physical Review A, 90, 042504(2014).

    [66] Zeng B, Chu W, Li G H et al. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy[J]. Physical Review A, 89, 042508(2014).

    [67] Wang P, Wu C Y, Lei M W et al. Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses[J]. Physical Review A, 92, 063412(2015).

    [68] Lei M W, Wu C Y, Zhang A et al. Population inversion in the rotational levels of the superradiant N2+ pumped by femtosecond laser pulses[J]. Optics Express, 25, 4535-4541(2017).

    [69] Zhong X Q, Miao Z M, Zhang L L et al. Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields[J]. Physical Review A, 96, 043422(2017).

    [70] Miao Z M, Zhong X Q, Zhang L L et al. Stimulated-Raman-scattering-assisted superfluorescence enhancement from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 98, 033402(2018).

    [71] Zhong X Q, Miao Z M, Zhang L L et al. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 97, 033409(2018).

    [72] Arissian L, Kamer B, Rastegari A et al. Transient gain from N2+ in light filaments[J]. Physical Review A, 98, 053438(2018).

    [73] Xu B, Jiang S C, Yao J P et al. Free-space N2+ lasers generated in strong laser fields: the role of molecular vibration[J]. Optics Express, 26, 13331-13339(2018).

    [74] Chen J M, Yao J P, Zhang H S et al. Electronic quantum coherence induced by strong field molecular ionization[J]. Physical Review A, 100, 031402(2019).

    [75] Zhang A, Liang Q Q, Lei M W et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses[J]. Optics Express, 27, 12638-12646(2019).

    [76] Xie H Q, Zhang Q, Li G H et al. Vibrational population transfer between electronic states of N2+ in polarization-modulated intense laser fields[J]. Physical Review A, 100, 053419(2019).

    [77] Clerici M, Bruhács A, Faccio D et al. Terahertz control of air lasing[J]. Physical Review A, 99, 053802(2019).

    [78] Lofthus A, Krupenie P H. The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 6, 113-307(1977).

    [79] Zhao S F, Jin C, Le A T et al. Determination of structure parameters in strong-field tunneling ionization theory of molecules[J]. Physical Review A, 81, 033423(2010).

    [80] Xu H L, Lötstedt E, Iwasaki A et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature Communications, 6, 8347(2015).

    [81] Liu Y, Ding P J, Lambert G et al. Recollision-induced superradiance of ionized nitrogen molecules[J]. Physical Review Letters, 115, 133203(2015).

    [82] Tikhonchuk V T. Tremblay-Bugeaud J F, Liu Y, et al. Excitation of nitrogen molecular ions in a strong laser field by electron recollisions[J]. The European Physical Journal D, 71, 292(2017).

    [83] Yao J P, Jiang S C, Chu W et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical Review Letters, 116, 143007(2016).

    [84] Azarm A, Corkum P, Polynkin P. Optical gain in rotationally excited nitrogen molecular ions[J]. Physical Review A, 96, 051401(2017).

    [85] Baltuska A, Kartashov D. Transient inversion in rotationally aligned nitrogen ions in a femtosecond filament. [C]∥Research in Optical Sciences, Messe Berlin, Berlin. Washington, D.C.: OSA, HTh4B, 5(2014).

    [86] Liu Z X, Yao J P, Chen J M et al. Near-resonant Raman amplification in the rotational quantum wave packets of nitrogen molecular ions generated by strong field ionization[J]. Physical Review Letters, 120, 083205(2018).

    [87] Yao J P, Chu W, Liu Z X et al. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields[J]. New Journal of Physics, 20, 033035(2018).

    [88] Mysyrowicz A, Danylo R, Houard A et al. Lasing without population inversion in N2+[J]. APL Photonics, 4, 110807(2019).

    [89] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994(1993).

    [90] Liu Y, Ding P J, Ibrakovic N et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration[J]. Physical Review Letters, 119, 203205(2017).

    [91] Xu H L, Lötstedt E, Ando T et al. Alignment-dependent population inversion in N2+ in intense few-cycle laser fields[J]. Physical Review A, 96, 041401(2017).

    [92] Britton M, Laferrière P, Ko D H et al. Testing the role of recollision in N2+ air lasing[J]. Physical Review Letters, 120, 133208(2018).

    [93] Li H X, Song Q Y, Yao J P et al. Air lasing from singly ionized N2 driven by bicircular two-color fields[J]. Physical Review A, 99, 053413(2019).

    [94] Li H L, Hou M Y, Zang H W et al. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 122, 013202(2019).

    [95] Chang Z H. Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau[J]. Physical Review A, 70, 043802(2004).

    [96] Wang S Q, Fu Y, Yao D W et al. Observation of the optical X 2Σg+-A 2Πu coupling in N2+ lasing induced by intense laser field[J]. Chinese Physics B, 28, 123301(2019).

    [97] Ando T, Lötstedt E, Iwasaki A et al. Rotational, vibrational, and electronic modulations in N2+ lasing at 391 nm: evidence of coherent B 2Σu+-X 2Σg+-A 2Πu coupling[J]. Physical Review Letters, 123, 203201(2019).

    [98] Fu Y, Lötstedt E, Li H L et al. Optimization of N2+ lasing through population depletion in the X 2Σg+ state using elliptically modulated ultrashort intense laser fields[J]. Physical Review Research, 2, 012007(2020).

    [99] Wan Y X, Xu B, Yao J P et al. Polarization ellipticity dependence of N2+ air lasing: the role of coupling between the ground state and a photo-excited intermediate state[J]. Journal of the Optical Society of America B, 36, 57-61(2019).

    [100] Pavicic D, Lee K F, Rayner D M et al. Direct measurement of the angular dependence of ionizationfor N2, O2, and CO2 in intense laser fields[J]. Physical Review Letters, 98, 243001(2007).

    [101] Malevich P N, Maurer R, Kartashov D et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament[J]. Optics Letters, 40, 2469-2472(2015).

    [102] Liu Z X, Yao J P, Zhang H S et al[2020-02-20]. Extreme nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wavepacket [2020-02-20].https:∥arxiv., org/abs/1910, 13596.

    Helong Li, Siqi Wang, Yao Fu, Huailiang Xu. Air Lasing: Principle, Generation, and Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500017
    Download Citation