• Photonics Research
  • Vol. 9, Issue 2, 131 (2021)
Dongki Lee1, Se Gyo Han2, Jungho Mun2, Kihyuk Yang1, Sung Hyuk Kim1, Junsuk Rho2、3, Kilwon Cho2, Dongyeop X. Oh4、5、*, and Mun Seok Jeong1、6、*
Author Affiliations
  • 1Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
  • 2Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
  • 3Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
  • 4Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
  • 5e-mail: dongyeop@krict.re.kr
  • 6e-mail: mjeong@skku.edu
  • show less
    DOI: 10.1364/PRJ.409762 Cite this Article Set citation alerts
    Dongki Lee, Se Gyo Han, Jungho Mun, Kihyuk Yang, Sung Hyuk Kim, Junsuk Rho, Kilwon Cho, Dongyeop X. Oh, Mun Seok Jeong. Elucidating the photoluminescence-enhancement mechanism in a push-pull conjugated polymer induced by hot-electron injection from gold nanoparticles[J]. Photonics Research, 2021, 9(2): 131 Copy Citation Text show less
    References

    [1] L.-Y. Hsu, W. Ding, G. C. Schatz. Plasmon-coupled resonance energy transfer. J. Phys. Chem. Lett., 8, 2357-2367(2017).

    [2] V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter, 29, 203002(2017).

    [3] S. V. Boriskina, H. Ghasemi, G. Chen. Plasmonic materials for energy: from physics to applications. Mater. Today, 16, 375-386(2013).

    [4] J. Z. Zhang, C. Noguez. Plasmonic optical properties and applications of metal nanostructures. Plasmonics, 3, 127-150(2008).

    [5] K. G. Thomas, P. V. Kamat. Chromophore-functionalized gold nanoparticles. Acc. Chem. Res., 36, 888-898(2003).

    [6] E. T. Vickers, M. Garai, S. Bonabi Naghadeh, S. Lindley, J. Hibbs, Q.-H. Xu, J. Z. Zhang. Two-photon photoluminescence and photothermal properties of hollow gold nanospheres for efficient theranostic applications. J. Phys. Chem. C, 122, 13304-13313(2017).

    [7] H. F. Zarick, A. Boulesbaa, E. M. Talbert, A. Puretzky, D. Geohegan, R. Bardhan. Ultrafast excited-state dynamics in shape-and composition-controlled gold-silver bimetallic nanostructures. J. Phys. Chem. C, 121, 4540-4547(2017).

    [8] K. G. Stamplecoskie, P. V. Kamat. Synergistic effects in the coupling of plasmon resonance of metal nanoparticles with excited gold clusters. J. Phys. Chem. Lett., 6, 1870-1875(2015).

    [9] P. Zheng, S. K. Cushing, S. Suri, N. Wu. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys., 17, 21211-21219(2015).

    [10] L. Chang, L. V. Besteiro, J. Sun, E. Y. Santiago, S. K. Gray, Z. Wang, A. O. Govorov. Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Lett., 4, 2552-2568(2019).

    [11] T. Debnath, H. N. Ghosh. Ternary metal chalcogenides: into the exciton and biexciton dynamics. J. Phys. Chem. Lett., 10, 6227-6238(2019).

    [12] F. Zheng, L.-W. Wang. Ultrafast hot carrier injection in Au/GaN: the role of band bending and the interface band structure. J. Phys. Chem. Lett., 10, 6174-6183(2019).

    [13] N. Wu. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 10, 2679-2696(2018).

    [14] M. Valenti, M. Jonsson, G. Biskos, A. Schmidt-Ott, W. Smith. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A, 4, 17891-17912(2016).

    [15] W. R. Erwin, H. F. Zarick, E. M. Talbert, R. Bardhan. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci., 9, 1577-1601(2016).

    [16] S. K. Cushing, N. Wu. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett., 7, 666-675(2016).

    [17] J. Li, J. Z. Zhang. Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev., 253, 3015-3041(2009).

    [18] D. Lee, S. H. Kim, S. K. Han, J. Mun, J. Rho, K. Cho, H. Rhee, M. S. Jeong, D. X. Oh. Effect of hot-electron injection on the excited-state dynamics of a hybrid plasmonic system containing poly(3-hexylthiophene)-coated gold nanoparticles. J. Phys. Chem. C, 123, 26564-26570(2019).

    [19] Y. Hattori, M. Abdellah, J. Meng, K. Zheng, J. Sá. Simultaneous hot electron and hole injection upon excitation of gold surface plasmon. J. Phys. Chem. Lett., 10, 3140-3146(2019).

    [20] W. R. Erwin, R. C. MacKenzie, R. Bardhan. Understanding the limits of plasmonic enhancement in organic photovoltaics. J. Phys. Chem. C, 122, 7859-7866(2018).

    [21] S. Bang, N. T. Duong, J. Lee, Y. H. Cho, H. M. Oh, H. Kim, S. J. Yun, C. Park, M.-K. Kwon, J.-Y. Kim. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett., 18, 2316-2323(2018).

    [22] A. Sharma, C. Sharma, B. Bhattacharyya, K. Gambhir, M. Kumar, S. Chand, R. Mehrotra, S. Husale. Plasmon induced ultrafast injection of hot electrons in Au nanoislands grown on a CdS film. J. Mater. Chem. C, 5, 618-626(2017).

    [23] H. F. Zarick, A. Boulesbaa, A. A. Puretzky, E. M. Talbert, Z. R. DeBra, N. Soetan, D. B. Geohegan, R. Bardhan. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites. Nanoscale, 9, 1475-1483(2017).

    [24] Y. Cao, T. Xie, R. C. Qian, Y. T. Long. Plasmon resonance energy transfer: coupling between chromophore molecules and metallic nanoparticles. Small, 13, 1601955(2017).

    [25] H. F. Zarick, W. R. Erwin, A. Boulesbaa, O. K. Hurd, J. A. Webb, A. A. Puretzky, D. B. Geohegan, R. Bardhan. Improving light harvesting in dye-sensitized solar cells using hybrid bimetallic nanostructures. ACS Photon., 3, 385-394(2016).

    [26] S. K. Balakrishnan, P. V. Kamat. Au–CsPbBr3 hybrid architecture: anchoring gold nanoparticles on cubic perovskite nanocrystals. ACS Energy Lett., 2, 88-93(2017).

    [27] J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, N. Wu. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics, 9, 601-607(2015).

    [28] E. Kymakis, G. D. Spyropoulos, R. Fernandes, G. Kakavelakis, A. G. Kanaras, E. Stratakis. Plasmonic bulk heterojunction solar cells: the role of nanoparticle ligand coating. ACS Photon., 2, 714-723(2015).

    [29] S. K. Cushing, A. D. Bristow, N. Wu. Theoretical maximum efficiency of solar energy conversion in plasmonic metal–semiconductor heterojunctions. Phys. Chem. Chem. Phys., 17, 30013-30022(2015).

    [30] S. K. Cushing, J. Li, J. Bright, B. T. Yost, P. Zheng, A. D. Bristow, N. Wu. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in Metal@TiO2 core-shell nanoparticles. J. Phys. Chem. C, 119, 16239-16244(2015).

    [31] J. Li, S. K. Cushing, P. Zheng, T. Senty, F. Meng, A. D. Bristow, A. Manivannan, N. Wu. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc., 136, 8438-8449(2014).

    [32] S. T. Kochuveedu, D. H. Kim. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale, 6, 4966-4984(2014).

    [33] D. Zhang, W. C. H. Choy, F. Xie, W. E. I. Sha, X. Li, B. Ding, K. Zhang, F. Huang, Y. Cao. Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv. Funct. Mater., 23, 4255-4261(2013).

    [34] F.-X. Xie, W. C. H. Choy, W. E. I. Sha, D. Zhang, S. Zhang, X. Li, C.-W. Leung, J. Hou. Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy Environ. Sci., 6, 3372-3379(2013).

    [35] S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow, N. Wu. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc., 134, 15033-15041(2012).

    [36] M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, H. J. Snaith. Plasmonic dye-sensitized solar cells using core–shell metal–insulator nanoparticles. Nano Lett., 11, 438-445(2011).

    [37] T. Hirakawa, P. V. Kamat. Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV–irradiation. J. Am. Chem. Soc., 127, 3928-3934(2005).

    [38] D. Lee, D.-J. Jang. Charge-carrier relaxation dynamics of poly(3-hexylthiophene)-coated gold hybrid nanoparticles. Polymer, 55, 5469-5476(2014).

    [39] K. Topp, H. Borchert, F. Johnen, A. V. Tunc, M. Knipper, E. Von Hauff, J. Parisi, K. Al-Shamery. Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J. Phys. Chem. A, 114, 3981-3989(2010).

    [40] D. H. Park, M. S. Kim, J. Joo. Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. Chem. Soc. Rev., 39, 2439-2452(2010).

    [41] D. Lee, D. H. Sin, S. W. Kim, H. Lee, H. R. Byun, J. Mun, W. Sung, B. Kang, D. G. Kim, H. Ko. Singlet exciton delocalization in gold nanoparticle-tethered poly(3-hexylthiophene) nanofibers with enhanced intrachain ordering. Macromolecules, 50, 8487-8496(2017).

    [42] D. Lee, J. Lee, K.-H. Song, H. Rhee, D.-J. Jang. Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles. Phys. Chem. Chem. Phys., 18, 2087-2096(2016).

    [43] Y.-B. Lee, S. Park, S. Lee, J. Kim, K.-S. Lee, J. Joo. Nanoscale luminescence characteristics of CdSe/ZnS quantum dots hybridized with organic and metal nanowires: energy transfer effects. J. Mater. Chem. C, 1, 2145-2151(2013).

    [44] G. Wang, M. A. Adil, J. Zhang, Z. Wei. Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater., 31, 1805089(2019).

    [45] B. Kan, Y. Q. Q. Yi, X. Wan, H. Feng, X. Ke, Y. Wang, C. Li, Y. Chen. Ternary organic solar cells with 12.8% efficiency using two nonfullerene acceptors with complementary absorptions. Adv. Energy Mater., 8, 1800424(2018).

    [46] S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater., 28, 9423-9429(2016).

    [47] K. Yao, L. Chen, Y. Chen, F. Li, P. Wang. Influence of water-soluble polythiophene as an interfacial layer on the P3HT/PCBM bulk heterojunction organic photovoltaics. J. Mater. Chem., 21, 13780-13784(2011).

    [48] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, T. J. Marks. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA, 105, 2783-2787(2008).

    [49] P. Bharadwaj, L. Novotny. Spectral dependence of single molecule fluorescence enhancement. Opt. Express, 15, 14266-14274(2007).

    [50] G. Han, Y. Guo, X. Ma, Y. Yi. Atomistic insight into donor/acceptor interfaces in high-efficiency nonfullerene organic solar cells. Solar RRL, 2, 1800190(2018).

    [51] D. R. Lide. CRC Handbook of Chemistry and Physics(2004).

    [52] H. Fan, T. Vergote, S. Xu, S. Chen, C. Yang, X. Zhu. A thieno[3, 4-b] thiophene linker enables a low-bandgap fluorene-cored molecular acceptor for efficient non-fullerene solar cells. Mater. Chem. Front., 2, 760-767(2018).

    [53] W. R. Hollingsworth, J. Lee, L. Fang, A. L. Ayzner. Exciton relaxation in highly rigid conjugated polymers: correlating radiative dynamics with structural heterogeneity and wavefunction delocalization. ACS Energy Lett., 2, 2096-2102(2017).

    [54] W. R. Hollingsworth, C. Segura, J. Balderrama, N. Lopez, P. Schleissner, A. L. Ayzner. Exciton transfer and emergent excitonic states in oppositely-charged conjugated polyelectrolyte complexes. J. Phys. Chem. B, 120, 7767-7774(2016).

    [55] F. Bencheikh, D. Duché, C. M. Ruiz, J.-J. Simon, L. Escoubas. Study of optical properties and molecular aggregation of conjugated low band gap copolymers: PTB7 and PTB7-Th. J. Phys. Chem. C, 119, 24643-24648(2015).

    [56] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv. Mater., 24, 3046-3052(2012).

    [57] C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, Y. Cao. Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J. Mater. Chem., 22, 1206-1211(2012).

    [58] F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl. Phys. Lett., 99, 153304(2011).

    [59] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. Bradley. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc., 130, 3030-3042(2008).

    [60] T. R. Hopper, D. Qian, L. Yang, X. Wang, K. Zhou, R. Kumar, W. Ma, C. He, J. Hou, F. Gao. Control of donor–acceptor photophysics through structural modification of a ‘twisting’ push–pull molecule. Chem. Mater., 31, 6860-6869(2019).

    [61] O. P. Dimitriev, D. A. Blank, C. Ganser, C. Teichert. Effect of the polymer chain arrangement on exciton and polaron dynamics in P3HT and P3HT:PCBM films. J. Phys. Chem. C, 122, 17096-17109(2018).

    [62] T. Unger, F. Panzer, C. Consani, F. Koch, T. Brixner, H. Bässler, A. Köhler. Ultrafast energy transfer between disordered and highly planarized chains of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). ACS Macro Lett., 4, 412-416(2015).

    [63] P. Roy, A. Jha, V. B. Yasarapudi, T. Ram, B. Puttaraju, S. Patil, J. Dasgupta. Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat. Commun., 8, 1716(2017).

    [64] B. Jana, S. Bhattacharyya, A. Patra. Conjugated polymer P3HT-Au hybrid nanostructures for enhancing photocatalytic activity. Phys. Chem. Chem. Phys., 17, 15392-15399(2015).

    [65] H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M. A. Loi. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun., 9, 243(2018).

    [66] J. Guo, H. Ohkita, H. Benten, S. Ito. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J. Am. Chem. Soc., 131, 16869-16880(2009).

    Dongki Lee, Se Gyo Han, Jungho Mun, Kihyuk Yang, Sung Hyuk Kim, Junsuk Rho, Kilwon Cho, Dongyeop X. Oh, Mun Seok Jeong. Elucidating the photoluminescence-enhancement mechanism in a push-pull conjugated polymer induced by hot-electron injection from gold nanoparticles[J]. Photonics Research, 2021, 9(2): 131
    Download Citation