• Infrared Technology
  • Vol. 42, Issue 12, 1121 (2020)
Menghan JIA1、2, Libin TANG2、3、*, Wenbin ZUO2、3, Fang WANG2, Rongbin JI3, and Jinzhong XIANG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong. Progress in Oxide-based Ultraviolet Detectors[J]. Infrared Technology, 2020, 42(12): 1121 Copy Citation Text show less
    References

    [1] Lucas R M, Yazar S, Young A R, et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate[J]. Photochemical & Photobiological Sciences, 2019, 18(3): 641-680.

    [2] ZHOU C, AI Q, CHEN X, et al. Ultraviolet photodetectors based on wide bandgap oxide semiconductor films[J]. Chinese Physics B, 2019, 28(4): 48503-048503.

    [3] Siegel A M, Shaw G A, Model J. Short-range communication with ultraviolet LEDs[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2004, 5530: 182-193.

    [4] XIA Y, LIU X Z. Study on the new structure of the solar blind ultraviolet detector[J]. IEEM, 2016, 1: 489-496.

    [6] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10): 7433-7473.

    [7] Butun S, Gokkavas M, YU H B, et al. Dark current reduction in ultraviolet metal-semiconductor-metal photodetectors based on wide band-gap semiconductors[J]. IEEE Leos Ann Mtg, 2009: 236-237.

    [8] CHEN H, LIU K, HU L, et al. New concept ultraviolet photodetectors[J]. Materials Today, 2015, 18(9): 493-502.

    [9] Kim M, Seo J H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354.

    [10] ZOU Yanan, ZHANG Yue, HU Yongming, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review[J]. Sensors, 2018, 18(7): 2072.

    [11] JIANG D, ZHANG J, LU Y, et al. Ultraviolet Schottky detector based on epitaxial ZnO thin film[J]. Solid State Electronics, 2008, 52(5): 679-682.

    [12] PENG Y, ZHANG Y, CHEN Z, et al. Arrays of solar-blind ultraviolet photodetector based on beta-Ga2O3 epitaxial thin films[J]. IEEE Photonics Technology Letters, 2018, 30(11): 993-996.

    [13] ZHANG D, LIU C, YIN B, et al. Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity[J]. Nanoscale, 2017, 9(26): 9095-9103.

    [14] SHI H, CHENG B, CAI Q, et al. Surface state controlled ultrahigh selectivity and sensitivity for UV photodetectors based on individual SnO2 nanowires[J]. Journal of Materials Chemistry C, 2016, 4(36): 8399-8406.

    [15] Goswami T, Mondal A, Singh P, et al. In2-xO3-y, 1D perpendicular nanostructure arrays as ultraviolet detector[J]. Solid State Sciences, 2015, 48: 56-60.

    [17] Asama N N, Lamia K A, Ghaida S, et al. Current-voltage characteristics of CdO nanostructure ultraviolet photoconductive detector[J]. International Journal of Science, Environment and Technology, 2014, 3(2): 684-691.

    [18] Baum W A, Johnson F S, Oberly J J, et al. Solar ultraviolet spectrum to 88 kilometers[J]. Physical Review, 1946, 70(9-10): 781-782.

    [19] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463.

    [20] Service R F. Will UV lasers beat the blues[J]. Science, 1997, 276(5314): 895-895.

    [21] Shim M G, Sionnest P. n-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983.

    [22] Dittrich T, Zinchuk V, Skryshevskyy V, et al. Electrical transport in passivated Pt/TiO2/Ti Schottky diodes[J]. Journal of Applied Physics, 2005, 98(10): 1522.

    [23] XUE H, KONG X, LIU Z, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(20): 223505.

    [24] Oshima T, Okuno T, Arai N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605.

    [25] Tzeng S K, Hon M H, Leu I C, et al. Improving the performance of a Zinc oxide nanowire ultraviolet photodetector by adding silver nanoparticles[J]. Journal of The Electrochemical Society, 2012, 159(4): H440-H443.

    [26] WEI T C, Tsai D S, Ravadgar P, et al. See-through, solar-blind photodetectors for use in Harsh environments[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 112-117.

    [27] CHOU H S, YANG K D, XIAO S H, et al. Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures[J]. Nanoscale, 2019, 11(28): 13385-13396.

    [28] Zak A K, Razali R, Majid W A, et al. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles[J]. International Journal of Nanomedicine, 2011, 6(1): 1399-1403.

    [29] Hsu C L, Chen K C, Hsueh T J. UV photodetector of a homojunction based on p-type Sb-doped ZnO nanoparticles and n-type ZnO nanowires[J]. IEEE Transactions on Electron Devices, 2014, 61(5): 1347-1353.

    [30] Alaie Z, Nejad S M, Yousefi M H. Array of ZnO nanoparticle-sensitized ZnO nanorods for UV photodetection[J]. Journal of Materials Science Materials in Electronics, 2014, 25(2): 852-856.

    [31] YANG K, XU C, HUANG L, et al. Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry[J]. Taylor & Francis, 2013, 43(3): 1501-1505.

    [32] HE J H, LIN Y H, Mcconney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functiona-lization[J]. Journal of Applied Physics, 2007, 102(8): 354.

    [33] WU C Y, Hsu H C, CHENG H M, et al. Structural and optical properties of ZnO nanosaws[J]. Journal of Crystal Growth, 2006, 287(1): 189-193.

    [34] GAO P X, DING Y, WANG Z L. Electronic transport in superlattice -structured ZnO nanohelix[J]. Nano Letters, 2009, 9(1): 137-143.

    [35] DING Y, KONG X Y, WANG Z L. Doping and planar defects in the formation of single-crystal ZnO nanorings[J]. Physical Review B, 2004, 70(23): 155-163.

    [36] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200.

    [37] Desgreniers S. High-density phases of ZnO: structural and compressive parameters[J]. Physical Review B, 1998, 58(21): 14102-14105.

    [38] YAN H, YANG Y, FU Z, et al. Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrode position[J]. Electrochemistry Communications, 2005, 7(11): 1117-1121.

    [39] TU Z C, HU X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes[J]. Physical Review B, 2006, 74(3): 035434.

    [40] Giakoumaki A N, Kenanakis G, Klini A, et al. 3D micro-structured arrays of ZnΟ nanorods[J]. Scientific Reports, 2017, 7(1): 2100.

    [41] LIU Y, Gorla C R, LIANG S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. Journal of Electronic Materials, 2000, 29(1): 69-74.

    [42] Fabricius H, Skettrup T, Bisggard P. Ultraviolet detectors in thin sputtered ZnO films[J]. Applied Optics, 1986, 28: 2764.

    [44] Jeong I S, Kim J H, Im S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure[J]. Applied Physics Letters, 2003, 83(14): 2946-2948.

    [45] Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector[J]. Applied Surface Science, 2005, 240(1-4): 280-285.

    [46] ZHANG J, SHI J, QI D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Materials, 2020, 8(2): 020906.

    [47] Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 2002, 90(6): 1006-1014.

    [48] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4):381-415.

    [49] ZHANG L, YAN J, ZHANG Y, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-ZnCo -doped β-Ga2O3[J]. Physica B., 2012, 407(8): 1227-1231.

    [50] Nakagomi S, Kubo S, Kokubun Y. The orientational relationship between monoclinic β-Ga2O3, and cubic NiO[J]. Journal of Crystal Growth, 2016, 445: 73-77.

    [51] Robert S, Guenter W, Michele B, et al. Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001)[J]. Applied Physics Express, 2015, 8(1):11101.

    [52] Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy (MBE) grown beta-Ga2O3 metal semiconductor metal (MSM) solar blind deep-UV photodetector[J]. Applied Physics Letters, 2017, 110(22): 041910.

    [53] Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220.

    [54] Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with an Au Schottky contact fabricated on single crystal substrates by annealing[J]. Applied Physics Letters, 2009, 94: 222102.

    [58] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47.

    [59] ZHENG L, DENG X, WANG Y, et al. Self‐powered flexible TiO2 fibrous photodetectors: heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles[J]. Advanced Functional Materials, 2020, 30(24): 2001604.

    [60] JI L W, Water W, Hsiao Y J, et al. TiO2-based ultraviolet photo-detectors[J]. Integrated Ferroelectrics, 2013, 143(1): 65-70.

    [61] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41.

    [62] WANG Y Q, WU B C, LIU Z G, et al. The first-principle study oleic acid/hydrazine exciting the growth of TiO2 (100) crystal face[J]. ICE Science, 2018, 6(4): 31-36.

    [63] JIA J, Yamamoto H, Okajima T, et al. On the crystal structural control of sputtered TiO2 thin films[J]. Nanoscale Research Letters, 2016, 11(1): 1-9.

    [64] LIU H Y, LIN W H, SUN W C, et al. A study of ultrasonic spray pyrolysis deposited rutile-TiO2-based metal-semiconductor-metal ultraviolet photodetector[J]. Materials Science in Semiconductor Processing, 2017, 57: 90-94.

    [65] HUANG H, XIE Y, ZHANG Z, et al. Growth and fabrication of sputtered TiO2 based ultraviolet detectors[J]. Applied Surface Science, 2014, 293(8): 248-254.

    [66] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors[J]. Applied Physics Letters, 1997, 71(7): 870-872.

    [67] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science Technology, 1998, 13(6): 563.

    [68] Katz O, Bahir G, Salzman J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors[J]. Applied Physics Letters, 2004, 84(20): 4092-4094.

    [69] Seo S W, Lee K K, Kang S, et al. GaN, metal-semiconductor-metal photodetectors grown on lithium gallate substrates by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 79(9): 1372-1374.

    [70] ZHANG L, YAO N, ZHANG B, et a1. TiO2 thin film UV detectors deposited by DC reactive magnetron sputtering[J]. Semiconductor Photonics and Technology, 2004, 10(4): 245-247.

    [72] Ulrich D R. Prospects for sol-gel processes[J]. Journal of Non-Crystalline Solids, 1990, 121(1-3): 465-479.

    [76] Tsai T Y, CHANG S J, WENG W Y, et a1. A visible-blind TiO2 nanowire photodetector[J]. Journal of the Electrochemical Society, 20l2, 159(4): J132.

    [77] Natarajian C, Nogami G. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films[J]. Journal of the Electrochemical Society, 1996, 143(5): 1547-1550.

    JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong. Progress in Oxide-based Ultraviolet Detectors[J]. Infrared Technology, 2020, 42(12): 1121
    Download Citation