• Acta Physica Sinica
  • Vol. 69, Issue 18, 184211-1 (2020)
Rui-Xue Bai1、2, Jue-Han Yang1, Da-Hai Wei1, and Zhong-Ming Wei1、*
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.7498/aps.69.20200206 Cite this Article
    Rui-Xue Bai, Jue-Han Yang, Da-Hai Wei, Zhong-Ming Wei. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 2020, 69(18): 184211-1 Copy Citation Text show less
    (a) Schematic of the structure for the double layer graphene modulator (reproduced with permission[44], Copyright 2012 American Chemical Society); (b) single-molecule optical switch (reproduced with permission[45], Copyright 2005 American Physical Society); (c) two-photon absorption in bilayer graphene and four possible transitions in bilayer graphene (reproduced with permission[46], Copyright 2011 American Chemical Society); (d) experimental setup for transmittance measurements of GCMs (reproduced with permission[47], Copyright 2014 American Chemical Society).
    Fig. 1. (a) Schematic of the structure for the double layer graphene modulator (reproduced with permission[44], Copyright 2012 American Chemical Society); (b) single-molecule optical switch (reproduced with permission[45], Copyright 2005 American Physical Society); (c) two-photon absorption in bilayer graphene and four possible transitions in bilayer graphene (reproduced with permission[46], Copyright 2011 American Chemical Society); (d) experimental setup for transmittance measurements of GCMs (reproduced with permission[47], Copyright 2014 American Chemical Society).
    (a) Schematic of coherent nonlinear optical response measurement setup (reproduced with permission[53], Copyright 2010 The American Physical Society); (b) transmission spectra of transmissive SWCNT saturable absorbers (reproduced with permission[55], Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) experimental setup of the ultrafast-laser based on SWNT SAs (reproduced with permission [56], Copyright 2016 Springer Nature); (d) schematic diagram of the Z-scan setup (reproduced with permission[54], Copyright 2019, Springer Nature).
    Fig. 2. (a) Schematic of coherent nonlinear optical response measurement setup (reproduced with permission[53], Copyright 2010 The American Physical Society); (b) transmission spectra of transmissive SWCNT saturable absorbers (reproduced with permission[55], Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) experimental setup of the ultrafast-laser based on SWNT SAs (reproduced with permission [56], Copyright 2016 Springer Nature); (d) schematic diagram of the Z-scan setup (reproduced with permission[54], Copyright 2019, Springer Nature).
    Saturable absorber based on graphene-Bi2Te3 heterojunction (reproduced with permission[103], Copyright 2015, American Chemical Society): (a) Schematic of graphene-Bi2Te3 heterostructure on the end-facet of fiber connector; (b) schematic diagram of the twin-detector measurement experimental setup; (c) schematic diagram showing the optical transitions in graphene-Bi2Te3 heterostructure; (d) Raman spectrum of the graphene-Bi2Te3 heterostructure.
    Fig. 3. Saturable absorber based on graphene-Bi2Te3 heterojunction (reproduced with permission[103], Copyright 2015, American Chemical Society): (a) Schematic of graphene-Bi2Te3 heterostructure on the end-facet of fiber connector; (b) schematic diagram of the twin-detector measurement experimental setup; (c) schematic diagram showing the optical transitions in graphene-Bi2Te3 heterostructure; (d) Raman spectrum of the graphene-Bi2Te3 heterostructure.
    (a) Third harmonic generation in MoS2 (reproduced with permission[113], Copyright 2014 American Chemical Society); (b) 2D (TMD) optical emitter (reproduced with permission[114], Copyright 2018 American Physical Society); (c) different nonlinear optical phenomenon of few-layer MoS2 (reproduced with permission[35], Copyright 2016, American Chemical Society); (d) polar plots of normalized SHG and THG (reproduced with permission[115], Copyright 2018 American Physical Society).
    Fig. 4. (a) Third harmonic generation in MoS2 (reproduced with permission[113], Copyright 2014 American Chemical Society); (b) 2D (TMD) optical emitter (reproduced with permission[114], Copyright 2018 American Physical Society); (c) different nonlinear optical phenomenon of few-layer MoS2 (reproduced with permission[35], Copyright 2016, American Chemical Society); (d) polar plots of normalized SHG and THG (reproduced with permission[115], Copyright 2018 American Physical Society).
    (a) Switch and signal of carriers in the linearly dispersive valence and conduction bands of bismuthine (reproduced with permission[124], Copyright 2017, American Chemical Society); (b) superposition principle of switch and signal light (reproduced with permission[124], Copyright 2017, American Chemical Society); (c) output polarization characteristics of BP Q-switched fiber laser (reproduced with permission[127], Copyright 2015, Springer Nature); (d) relationship between transmittance of the phosphorene dispersions and intensity of the femtosecond laser (reproduced with permission[104], Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Fig. 5. (a) Switch and signal of carriers in the linearly dispersive valence and conduction bands of bismuthine (reproduced with permission[124], Copyright 2017, American Chemical Society); (b) superposition principle of switch and signal light (reproduced with permission[124], Copyright 2017, American Chemical Society); (c) output polarization characteristics of BP Q-switched fiber laser (reproduced with permission[127], Copyright 2015, Springer Nature); (d) relationship between transmittance of the phosphorene dispersions and intensity of the femtosecond laser (reproduced with permission[104], Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    (a) Photograph of the microfiber deposited with PQDs, (b) saturable absorption property of the PQD-SA device (reproduced with permission[138], Copyright 2017 Springer Nature); (c) the linear, nonlinear and total refractive index changes with photon energy for 0s–1p transitions (reproduced with permission[139], Copyright 2011 American Institute of Physics); (d) asymmetric quantum dot in a microcavity as a nonlinear optical element (reproduced with permission[140], ©2012 American Physical Society).
    Fig. 6. (a) Photograph of the microfiber deposited with PQDs, (b) saturable absorption property of the PQD-SA device (reproduced with permission[138], Copyright 2017 Springer Nature); (c) the linear, nonlinear and total refractive index changes with photon energy for 0s–1p transitions (reproduced with permission[139], Copyright 2011 American Institute of Physics); (d) asymmetric quantum dot in a microcavity as a nonlinear optical element (reproduced with permission[140], ©2012 American Physical Society).
    Rui-Xue Bai, Jue-Han Yang, Da-Hai Wei, Zhong-Ming Wei. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 2020, 69(18): 184211-1
    Download Citation