• Photonics Research
  • Vol. 12, Issue 8, 1794 (2024)
Yihao Chen1, Juntao Duan1, Jin Li1, Yan Chen2..., Jiewen Li1, Jianan Duan1,3,4, Xiaochuan Xu1,3,5 and Jiawei Wang1,3,*|Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuit, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
  • 4e-mail: duanjianan@hit.edu.cn
  • 5e-mail: xuxiaochuan@hit.edu.cn
  • show less
    DOI: 10.1364/PRJ.525601 Cite this Article Set citation alerts
    Yihao Chen, Juntao Duan, Jin Li, Yan Chen, Jiewen Li, Jianan Duan, Xiaochuan Xu, Jiawei Wang, "High-order Autler–Townes splitting in electrically tunable photonic molecules," Photonics Res. 12, 1794 (2024) Copy Citation Text show less
    References

    [1] S. H. Autler, C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev., 100, 703-722(1955).

    [2] S. J. Whiteley, G. Wolfowicz, C. P. Anderson. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys., 15, 490-495(2019).

    [3] M. F. Limonov, M. V. Rybin, A. N. Poddubny. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [4] G. Yumoto, H. Hirori, F. Sekiguchi. Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals. Nat. Commun., 12, 3026(2021).

    [5] J. Liu, H. Yang, C. Wang. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system. Sci. Rep., 6, 19040(2016).

    [6] L. Stern, B. Desiatov, N. Mazurski. Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides. Nat. Commun., 8, 14461(2017).

    [7] H. Wu, Y. Ruan, Z. Li. Fundamental distinction of electromagnetically induced transparency and Autler-Townes splitting in breaking the time-reversal symmetry. Laser Photonics Rev., 16, 2100708(2022).

    [8] K. Liao, X. Hu, T. Gan. Photonic molecule quantum optics. Adv. Opt. Photonics, 12, 60-134(2020).

    [9] Y. Li, F. Abolmaali, K. W. Allen. Whispering gallery mode hybridization in photonic molecules. Laser Photonics Rev., 11, 1600278(2017).

    [10] B. Peng, S. K. Ozdemir, W. Chen. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [11] B. Li, C. P. Ho, C. Lee. Tunable Autler–Townes splitting observation in coupled whispering gallery mode resonators. IEEE Photonics J., 8, 4501910(2016).

    [12] X. Wang, Z. Wang, H. Dong. Collective coupling of 3D confined optical modes in monolithic twin microtube cavities formed by nanomembrane origami. Nano Lett., 22, 6692-6699(2022).

    [13] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [14] H. Xu, Y. Qin, G. Hu. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci. Appl., 12, 64(2023).

    [15] M. Zhang, C. Wang, Y. Hu. Electronically programmable photonic molecule. Nat. Photonics, 13, 36-40(2018).

    [16] B. Peng, Ş. K. Özdemir, S. Rotter. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [17] T. Grossmann, T. Wienhold, U. Bog. Polymeric photonic molecule super-mode lasers on silicon. Light Sci. Appl., 2, e82(2013).

    [18] E. Lafalce, Q. Zeng, C. H. Lin. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nat. Commun., 10, 561(2019).

    [19] J. Wang, Y. Yin, Q. Hao. Curved nanomembrane-based concentric ring cavities for supermode hybridization. Nano Lett., 18, 7261-7267(2018).

    [20] B. Peng, Ş. K. Özdemir, F. Lei. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [21] W. E. Hayenga, H. Garcia-Gracia, E. Sanchez Cristobal. Electrically pumped microring parity-time-symmetric lasers. Proc. IEEE, 108, 827-836(2020).

    [22] G. Gao, D. Li, Y. Zhang. Tuning of resonance spacing over whole free spectral range based on Autler-Townes splitting in a single microring resonator. Opt. Express, 23, 26895-26904(2015).

    [23] W. Li, J. Li, L. Yu. Observation of Aulter–Townes splitting in subwavelength grating metamaterial ring resonators. APL Photonics, 8, 016102(2023).

    [24] J. Li, M. Tang, J. Duan. Exceptional points in a spiral ring cavity for enhanced biosensing. J. Lightwave Technol., 41, 2870-2878(2023).

    [25] Z. Tao, B. Shen, W. Li. Versatile photonic molecule switch in multimode microresonators. Light Sci. Appl., 13, 51(2024).

    [26] J. Zhu, S. K. Ozdemir, Y.-F. Xiao. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [27] J. Wang, M. Tang, Y. D. Yang. Steering directional light emission and mode chirality through postshaping of cavity geometry. Laser Photonics Rev., 14, 2000118(2020).

    [28] D. B. Sohn, O. E. Örsel, G. Bahl. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photonics, 15, 822-827(2021).

    [29] H. Tian, J. Liu, A. Siddharth. Magnetic-free silicon nitride integrated optical isolator. Nat. Photonics, 15, 828-836(2021).

    [30] A. Li, W. Bogaerts. Backcoupling manipulation in silicon ring resonators. Photonics Res., 6, 620-629(2018).

    [31] Q. Zhong, J. Kou, S. K. Ozdemir. Hierarchical construction of higher-order exceptional points. Phys. Rev. Lett., 125, 203602(2020).

    [32] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [33] S. K. Ozdemir, S. Rotter, F. Nori. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [34] H. Lee, A. Kecebas, F. Wang. Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer. eLight, 3, 20(2023).

    [35] Q.-X. Ji, P. Liu, W. Jin. Multimodality integrated microresonators using the Moiré speedup effect. Science, 383, 1080-1083(2024).

    [36] L. Jin, X. Chen, Y. Wu. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat. Commun., 13, 1727(2022).

    [37] J. K. Poon, A. Govdeli, A. Sharma. Silicon photonics for the visible and near-infrared spectrum. Adv. Opt. Photonics, 16, 1-59(2024).

    [38] A. Rahim, J. Goyvaerts, B. Szelag. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron., 25, 8200818(2019).

    [39] H. Tang, L. Zhou, J. Xie. Electromagnetically induced transparency in a silicon self-coupled optical waveguide. J. Lightwave Technol., 36, 2188-2195(2018).

    [40] J. Wang, Y. Yin, Q. Hao. Strong coupling in a photonic molecule formed by trapping a microsphere in a microtube cavity. Adv. Opt. Mater., 6, 1700842(2018).

    [41] S. Wonjoo, W. Zheng, F. Shanhui. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [42] B. E. Little, J.-P. Laine, S. T. Chu. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett., 22, 4-6(1997).

    [43] J. Li, W. Li, Y. Feng. On-chip fabrication-tolerant exceptional points based on dual-scatterer engineering. Nano Lett., 24, 3906-3913(2024).

    [44] J. Wiersig, A. Eberspächer, J.-B. Shim. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 84, 023845(2011).

    [45] B. Peng, Ş. K. Özdemir, M. Liertzer. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 113, 6845-6850(2016).

    [46] C. Yang, X. Jiang, Q. Hua. Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities. Laser Photonics Rev., 11, 1600178(2017).

    [47] C. Yang, Y. Hu, X. Jiang. Analysis of a triple-cavity photonic molecule based on coupled-mode theory. Phys. Rev. A, 95, 033847(2017).

    [48] Ł. Dusanowski, D. Köck, E. Shin. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. Nano Lett., 20, 6357-6363(2020).

    [49] P. Huang, B. Chen, D. Xia. Integrated reconfigurable photon-pair source based on high-Q nonlinear chalcogenide glass microring resonators. Nano Lett., 23, 4487-4494(2023).

    [50] D. Pidgayko, A. Tusnin, J. Riemensberger. Voltage-tunable optical parametric oscillator with an alternating dispersion dimer integrated on a chip. Optica, 10, 1582-1586(2023).

    [51] H. Yu, P. Li, M. Chen. Analog photonic link based on the Aulter-Townes splitting induced dual-band filter for OCS and the SOI signal processor. Opt. Lett., 40, 2225-2228(2015).

    [52] M. Loyez, M. Adolphson, J. Liao. From whispering gallery mode resonators to biochemical sensors. ACS Sens., 8, 2440-2470(2023).

    [53] L. Yu, L. Chen, W. Zhang. Tunable Autler–Townes splitting in optical fiber. J. Lightwave Technol., 37, 3620-3625(2019).

    [54] J. Wang, K. Liu, Q. Zhao. Fully symmetric controllable integrated three-resonator photonic molecule. arXiv preprint(2021).

    Yihao Chen, Juntao Duan, Jin Li, Yan Chen, Jiewen Li, Jianan Duan, Xiaochuan Xu, Jiawei Wang, "High-order Autler–Townes splitting in electrically tunable photonic molecules," Photonics Res. 12, 1794 (2024)
    Download Citation