• Acta Photonica Sinica
  • Vol. 46, Issue 8, 814004 (2017)
LOU Yang* and WEI Yi-zhen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174608.0814004 Cite this Article
    LOU Yang, WEI Yi-zhen. Characteristics of Enhanced SSFS Based on Cascaded Fiber[J]. Acta Photonica Sinica, 2017, 46(8): 814004 Copy Citation Text show less
    References

    [1] HASEGAWA A, TAPPERT F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 1973, 23(3):142-144.

    [2] GORDON J P. Theory of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10):662-664.

    [3] MITSCHKE F M, MOLLENAUER L F. Discovery of the soliton self-frequency shift[J]. Physics Today, 1987, 11(10):659-661.

    [4] NISHITANI T, KONISHI T, ITOH K. Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3):724-732.

    [5] ODA S, MARUTA A. All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation.[J]. Optics Express, 2006, 14(17):7895-7902.

    [6] ZHU Qi-hua, ZHOU Shou-huan, ZHAO Lei,et al. Influence of Raman gain on soliton transmission[J]. Acta Physica Sinica, 2011, 60(8):331-339.

    [7] GAO Xue-jian. Study on 2 μm femtosecond pulse fiber laser based on Raman soliton self-frequency shift[D]. Changechun: School of Electronic Science and Engineering, 2016.

    [8] SEREBRYANNIKOV E E, HU Ming-lie, LI Yan-feng, et al. Enhanced soliton self-frequency shift of ultrashort light pulses[J]. Journal of Experimental and Theoretical Physics Letters, 2005, 81(10):487-490.

    [9] ALKADRY A, ROCHETTE M. Maximized soliton self-frequency shift in non-uniform microwires by the control of third-order dispersion perturbation[J]. Journal of Lightwave Technology, 2013, 31(9):1462-1467.

    [10] CHESTNUT D A, TAYLOR J R. Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping[J]. Optics Letters, 2003, 28(24):2512-2514.

    [11] BLOW K J, DORAN N J, WOOD D. Suppression of the soliton self-frequency shift by bandwidth-limited amplification[J]. Journal of the Optical Society of America B, 1988, 5(6):1301-1304.

    [12] LIU X, XU C, KNOX W H, et al. Soliton self-frequency shift in a short tapered air–silica microstructure fiber[J]. Optics Letters, 2001, 26(6):358-360.

    [13] XUE Guang-hui, YIN Ke, ZHANG Bin, et al. Numerical study of soliton self-frequency shift in fluoride fiber[J]. Chinese Journal of Lasers, 2013, 40(b12):162-167.

    [14] WEI D, GALSTIAN T, ZOHRABYAN A, et al. Tunable femtosecond soliton generation in Ge-doped fibre[J]. Electronics Letters, 2004, 40(21):1329–1330.

    [15] LU Chuan, YU Chong-xiu, SANG Xin-zhu, et al. Wavelength conversion based on SSFS in highly nonlinear PCF[J]. Semiconductor Optoelectronics, 2009, 30(4):595-598.

    [16] TUCKER L, CARNEY F, MCMILLAN P, et al. Raman and resonance raman spectroscopy of selected rare-earth sesquioxides[J]. Applied Spectroscopy, 1984, 38(6):857-860.

    [17] GENG Ji-hong, WANG Qing, JIANG Shi-bin. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier[J]. Applied Optics, 2012, 51(7):834-840.

    [18] SWIDERSKI J, MICHALSKA M. Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier[J]. Laser Physics Letters, 2013, 10(3):035105.

    CLP Journals

    [1] Kong Defei, Jia Dongfang, Feng Dejun, Wang Zhaoying, Ge Chunfeng, Yang Tianxin. Soliton Self-Frequency Shift in Optical Fibers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101902

    LOU Yang, WEI Yi-zhen. Characteristics of Enhanced SSFS Based on Cascaded Fiber[J]. Acta Photonica Sinica, 2017, 46(8): 814004
    Download Citation