• Semiconductor Optoelectronics
  • Vol. 41, Issue 5, 611 (2020)
WU Liying*, QU Minni, FU Xuecheng, TIAN Miao..., LIU Min, LI Jinxi and CHENG Xiulan|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.05.002 Cite this Article
    WU Liying, QU Minni, FU Xuecheng, TIAN Miao, LIU Min, LI Jinxi, CHENG Xiulan. Fabrication of Microlens Array and Its Application Progresses in Light Field Imaging[J]. Semiconductor Optoelectronics, 2020, 41(5): 611 Copy Citation Text show less
    References

    [1] Horridge G A. The separation of visual axes in apposition compound eyes[J]. Philosophical Trans. of the Royal Society of London B: Biological Sciences, 1978, 285(1003): 1-59.

    [2] Land M F. Variations in the structure and design of compound[J]. Facets of Vision, 1989, 3: 30-73.

    [3] Gershun A. The light field[J]. Studies in Appl. Mathematics, 1939, 18(1/4): 51-151.

    [4] Moore S, Gomez J, Lek D, et al. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique[J]. Microelectronic Engin., 2016, 162: 57-62.

    [5] Popovic Z D, Sprague R A, Connell G N. Technique for monolithic fabrication of microlens arrays[J]. Appl. Opt., 1988, 27: 1281-1284.

    [6] Di S, Lin H, Du R. An artificial compound eyes imaging system based on MEMS technology[C]// Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics (ROBIO), 2009: 13-18.

    [7] Daly D, Stevens R, Hutley M, et al. The manufacture of microlenses by melting photoresist[J]. Measurement Science and Technol., 1990, 1(8): 759.

    [8] Audran S, Faure B, Mortini B, et al. Study of dynamical formation and shape of micro lenses formed by the reflow method[J]. Proc. SPIE, 2006: 61534D.

    [9] Albero J, Perrin S, Bargiel, et al. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level[J]. Optics Express, 2015, 23(9): 11702-11712.

    [10] Luo Y, Wang L, Ding Y, et al. Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface[J]. Appl. Surface Science, 2013, 279: 36-40.

    [11] Kim J Y, Brauer N B, Fakhfouri V, et al. Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique[J]. Optical Materials Express, 2011, 1(2): 259-269.

    [12] Kim J Y, Pfeiffer K, Voigt A, et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique[J]. J. of Materials Chemistry, 2012, 22(7): 3053-3058.

    [13] Zhu X, Zhu L, Chen H, et al. Fabrication of high numerical aperture microlens array based on drop-on-demand generating of water-based molds[J]. Optics & Laser Technol., 2015, 68: 23-27.

    [14] Kim J Y, Martin O C, Baek N S, et al. Simple and easily controllable parabolic-shaped microlenses printed on polymeric mesas[J]. J. Mater. Chem.: C, 2013, 1(11): 2152-2157.

    [15] Xia J, Qu D, Yang H, et al. Self assembly polymer microlens array for integral imaging[J]. Displays, 2010, 31(4/5): 186-190.

    [16] Chang C Y, Yang S Y, Huang L S, et al. Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer[J]. Opt. Express, 2006, 14(13): 6253-6258.

    [17] Pan C, Wu T, Chen M, et al. Hot embossing of micro-lens array on bulk metallic glass[J]. Sensors and Actuators A: Phys., 2008, 141(2): 422-431.

    [18] Yao D, Nagarajan P, Li L, et al. A two-station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers[J]. Polymer Engin. & Science, 2007, 47(4): 530-539.

    [19] Albero J, Nieradko L, Gorecki C, et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques[J]. Opt. Express, 2009, 17(8): 6283-6292.

    [20] Bitterli R, Scharf T, Herzig H-P, et al. Fabrication and characterization of linear diffusers based on concave micro lens arrays[J]. Opt. Express, 2010, 18(13): 14251-14261.

    [21] Du G, Yang Q, Chen F, et al. Direct fabrication of seamless roller molds with gapless and shaped-controlled concave microlens arrays[J]. Opt. Lett., 2012, 37(21): 4404-4406.

    [22] Meng X, Chen F, Yang Q, et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching[J]. Appl. Phys. A, 2015, 121(1): 157-162.

    [23] Chen F, Liu H W, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt. Express, 2010, 18: 20334-20343.

    [24] Hao B, Liu H, Chen F, et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surface[J]. Opt. Express, 2012, 20(12): 12939-12948.

    [25] Yi X J, Zhang X Y, Li Y, et al. Microlens arrays formed by melting photoresist and ion beam milling[J]. Proc. SPIE, 1998: 249-253.

    [26] Harriott L, Scotti R, Cummings K, et al. Micromachining of integrated optical structures[J]. Appl. Phys. Lett., 1986, 48(25): 1704-1706.

    [27] Kley E B, Possner T, Goring R. Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exchange in glass[J]. Inter. J. of Optoelectron., 1993, 8: 513-513.

    [28] Fujita T, Nishihara H, Koyama J. Fabrication of micro lenses using electronbeam lithography[J]. Opt. Lett., 1981, 6(12): 613-615.

    [29] Brinksmeier E, Autschbach L. Ball-end milling of free-form surfaces for optical mold inserts[C]// Proc. of 19th Annual Meeting of American Society for Precision Engin. (ASPE), 2004: 88-91.

    [30] Yan J, Zhang Z, Kuriyagawa T, et al. Fabricating micro-structured surface by using single-crystalline diamond endmill[J]. The Inter. J. of Adv. Manufacturing Technol., 2010, 51(9): 957-964.

    [31] Fang F, Zhang X, Hu X. Cylindrical coordinate machining of optical freeform surfaces[J]. Opt. Express, 2008, 16(10): 7323-7329.

    [32] Zhou J, Li L, Naples N, et al. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process[J]. J. of Micromechanics and Microengin., 2013, 23(7): 075010.

    [33] Chen F Z, Chen C H, Wu C H, et al. Development of a double-sided micro lens array for micro laser projector application[J]. Opt. Rev., 2012, 19(4): 238-241.

    [35] Lippmann M G. 1908. Epreuves reversible donnant la sensation du relief[J]. J. Phys, 7, 821-825.

    [36] Ives F E. Parallax stereogram and process of making same[P]. US Patent 725, 567. http://www.google.com/patents/US725567.

    [37] Adelson E H, Wang J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14(2): 99-106.

    [38] Ng R. Fourier slice photography[C]// Proc. of the Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH05), 2005: 735-744.

    [39] Ng R, Levoy M, Bredif M, et al. Light field photography with a hand-held plenoptic camera[EB/OL]. https://graphics.stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf.

    [40] Ng R. Digital light field photography[D]. Stanford: Stanford University, 2006.

    [41] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans. on Graphics (TOG), 2006, 25(3): 924-934.

    [42] Lumsdaine A, Georgiev T. The focused plenoptic camera[C]//Proc. of the IEEE International Conference on Computational Photography (ICCP09), 2009: 1-8.

    [43] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field[C]//Proc. of the SPIE Conference on Electronic Imaging (SPIE12), 2012: 22-26.

    [44] Bishop T E, Favaro P. The light field camera: Extended depth of field, aliasing and superresolution[J]. IEEE Trans. Pattern Anal. Mach.Intell., 2012, 34(5): 972-986.

    [45] Wanner S, Goldluecke B. Globally consistent depth labeling of 4D lightfields[C]//Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR12), 2012: 41-48.

    [46] Shroff S A, Berkner K. Image formation analysis and high resolution image reconstruction for plenoptic imaging systems[J]. Appl. Opt., 2013, 52: D22-D31.

    [47] Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Opt. Express, 2013, 21(21): 25418-25439.

    [48] Nava P F, Luke J P. Simultaneous estimation of superresolved depth and all-in-focus images from a plenoptic camera[C]//Proc. of the 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV09), 2009: 1-4.

    [49] Georgiev T, Chunev G, Lumsdaine A. Superresolution with the focused plenoptic camera[C]//Proc. of the SPIE Conf. on Computational Imaging (SPIE11), 2011, 7873: 1105-1117.

    [50] Yu Z, Yu J, Lumsdaine A, et al. An analysis of color demosaicing in plenoptic cameras[C]//Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR12), 2012: 901-908.

    [51] Liang Chia-Kai, Ramamoorthi R. A light transport framework for lenslet light field cameras[J]. ACM Trans. on Graphics, 2015, 34(2): article 16.

    WU Liying, QU Minni, FU Xuecheng, TIAN Miao, LIU Min, LI Jinxi, CHENG Xiulan. Fabrication of Microlens Array and Its Application Progresses in Light Field Imaging[J]. Semiconductor Optoelectronics, 2020, 41(5): 611
    Download Citation