[1] Tang B, Hu H, Wan H, et al. Growth of highquality AlN films on sapphire substrate by introducing voids through growthmode modification[J]. Appl. Surface Science, 2020, 518: 146218.
[2] Murotani H, Tanabe R, Hisanaga K, et al. High internal quantum efficiency and optically pumped stimulated emission in AlGaNbased UVC multiple quantum wells[J]. Appl. Phys. Lett., 2020, 117(16): 162106.
[3] Li X, Zhao J, Liu T, et al. Growth of semipolar (1013) AlN film on Mplane sapphire with hightemperature nitridation by HVPE[J]. Materials, 2021, 14(7): 1722.
[4] Zhao J, Zhang X, Fan A, et al. Effects of an insitu SiNx interlayer on structural and optical properties for nonpolar aplane GaN epilayers[J]. Jpn. J. Appl. Phys., 2020, 59(1): 010909.
[5] Foronda H M, Hunter D A, Pietsch M, et al. Electrical properties of (1122) Si∶AlGaN layers at high Al contents grown by metalorganic vapor phase epitaxy[J]. Appl. Phys. Lett., 2020, 117(22): 221101.
[6] Spasevski L, Kusch G, Pampili P, et al. A systematic comparison of polar and semipolar Sidoped AlGaN alloys with high AlN content[J]. J. Phys. D: Appl. Phys., 2021, 54: 035302.
[7] Yang G, Zhang X, Wu Z, et al. Crucial influential factor on background electron concentration in semipolar (1122) plane AlGaN epilayers[J]. Superlattices and Microstructures, 2019, 125: 338342.
[8] Chen S, Zhang X, Fan A, et al. Characterization of optical properties and thermooptic effect for nonpolar AlGaN thin films using spectroscopic ellipsometry[J]. J. Phys. D: Appl. Phys., 2020, 53(20): 205104.
[9] Jo M, Itokazu Y, Kuwaba S, et al. Controlled crystal orientations of semipolar AlN grown on an mplane sapphire by MOCVD[J]. Jpn. J. Appl. Phys., 2019, 58: SC1031.
[10] Lahourcade L, BelletAmalric E, Monroy E, et al. Molecular beam epitaxy of semipolar AlN (1122) and GaN (1122) on msapphire[J]. J. Mater. Sci.: Mater. Electron., 2008, 19: 805809.
[11] Jo M, Morishita N, Okada N, et al. Impact of thermal treatment on the growth of semipolar AlN on mplane sapphire[J]. AIP Advances, 2018, 8: 105312.
[12] Chen S, Li Y, Ding Y, et al. Defect reduction in AlN epilayers grown by MOCVD via intermediatetemperature interlayers[J]. J. of Elec. Materi., 2015, 44(1): 217221.
[13] BourretCourchesne E D, Kellermann S, Yu K M, et al. Reduction of threading dislocation density in GaN using an intermediate temperature interlayer[J]. Appl. Phys. Lett., 2000, 77(22): 35623564.
[14] Liang Z, Zhang X, Dai Q, et al. Indiumsurfactantassisted epitaxial growth of semipolar (1122) plane Al0.42Ga0.58N films[J]. J. Mater. Sci.: Mater. Electron., 2017, 28(20): 1521715223.
[15] Dai Q, Zhang X, Zhao J, et al. Effects of Sidoping on characteristics of semipolar (1122) plane Al0.45Ga0.55N epilayers[J]. Materials Science in Semiconductor Processing, 2017, 58: 3033.
[16] Chen L, Lin W, Chen H Y, et al. Annihilation and regeneration of defects in (1122) semipolar AlN via hightemperature annealing and MOVPE regrowth[J]. Crystal Growth & Design, 2021, 21(5): 29112919.
[17] Zhao G, Wang L, Yang S, et al. Anisotropic structural and optical properties of semipolar (1122) GaN grown on mplane sapphire using double AlN buffer layers[J]. Sci. Rep., 2016, 6(1): 20787.
[18] Dinh D V, Conroy M, Zubialevich V Z, et al. Single phase (1122) AlN grown on (1010) sapphire by metalorganic vapour phase epitaxy[J]. J. of Crystal Growth, 2015, 414: 9499.
[19] Jeong J, Jang J, Hwang J, et al. Improved performance of semipolar () GaNbased lightemitting diodes grown on SiNx interlayer[J]. J. of Crystal Growth, 2013, 370: 114119.
[20] Woo S, Kim M, So B, et al. Defect reduction of SiNx embedded mplane GaN grown by hydride vapor phase epitaxy[J]. J. of Crystal Growth, 2014, 407: 610.