• Frontiers of Optoelectronics
  • Vol. 15, Issue 2, 12200 (2022)
Yuan Liu1、2, Xu Lian2、3, Zhangdi Xie2, Jinlin Yang2, Yishui Ding1、2, and Wei Chen1、2、4、*
Author Affiliations
  • 1Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
  • 2Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
  • 3Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
  • 4Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
  • show less
    DOI: 10.1007/s12200-022-00026-3 Cite this Article
    Yuan Liu, Xu Lian, Zhangdi Xie, Jinlin Yang, Yishui Ding, Wei Chen. Probing fluorination promoted sodiophilic sites with model systems of F16CuPc and CuPc[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200 Copy Citation Text show less
    References

    [1] Tang, S., Qiu, Z., Wang, X.Y., Gu, Y., Zhang, X.G., Wang, W.W., Yan, J.W., Zheng, M.S., Dong, Q.F., Mao, B.W.: A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018)

    [2] Fan, L., Li, X.: Recent advances in effective protection of sodium metal anode. Nano Energy 53, 630–642 (2018)

    [3] Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X., Kim, J.K.: Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 27, 522–554 (2020)

    [4] Bao, C., Wang, B., Liu, P., Wu, H., Zhou, Y., Wang, D., Liu, H., Dou, S.: Solid electrolyte interphases on sodium metal anodes. Adv. Func. Mater. 30(52), 2004891 (2020)

    [5] Zhu, Y.-F., Xiao, Y., Dou, S.-X., Kang, Y.-M., Chou, S.-L.: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 1(1), 13–27 (2021)

    [6] Jin, T., Li, H., Zhu, K., Wang, P.F., Liu, P., Jiao, L.: Polyaniontype cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020)

    [7] Doi, K., Yamada, Y., Okoshi, M., Ono, J., Chou, C.P., Nakai, H., Yamada, A.: Reversible sodium metal electrodes: is fluorine an essential interphasial component? Angew. Chem. 58(24), 8024–8028 (2019)

    [8] Wang, S., Chen, Y., Jie, Y., Lang, S., Song, J., Lei, Z., Wang, S., Ren, X., Wang, D., Li, X., Cao, R., Zhang, G., Jiao, S.: Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 4(5), 1900856 (2020)

    [9] Le, P.M., Vo, T.D., Pan, H., Jin, Y., He, Y., Cao, X., Nguyen, H.V., Engelhard, M.H., Wang, C., Xiao, J., Zhang, J.G.: Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Func. Mater. 30(25), 2001151 (2020)

    [10] Lee, Y., Lee, J., Lee, J., Kim, K., Cha, A., Kang, S., Wi, T., Kang, S.J., Lee, H.W., Choi, N.S.: Fluoroethylene carbonate-based electrolyte with 1 M sodium bis (fluorosulfonyl) imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 10(17), 15270–15280 (2018)

    [11] Wang, H., Wang, C., Matios, E., Li, W.: Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. 57(26), 7734–7737 (2018)

    [12] Shi, Q., Zhong, Y., Wu, M., Wang, H., Wang, H.: High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew. Chem. 57(29), 9069–9072 (2018)

    [13] Wang, H., Tong, Z., Yang, R., Huang, Z., Shen, D., Jiao, T., Cui, X., Zhang, W., Jiang, Y., Lee, C.S.: Batteries: electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 9(48), 1970190 (2019)

    [14] Zheng, J., Chen, S., Zhao, W., Song, J., Engelhard, M.H., Zhang, J.G.: Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018)

    [15] Xu, C., Lindgren, F., Philippe, B., Gorgoi, M., Bjorefors, F., Edstrom, K., Gustafsson, T.: Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27(7), 2591–2599 (2015)

    [16] Tian, H., Shao, H., Chen, Y., Fang, X., Xiong, P., Sun, B., Notten, P.H., Wang, G.: Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 57, 692–702 (2019)

    [17] Zhu, M., Wang, G., Liu, X., Guo, B., Xu, G., Huang, Z., Wu, M., Liu, H.K., Dou, S.X., Wu, C.: Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew. Chem. 59(16), 6596–6600 (2020)

    [18] Zhao, Y., Goncharova, L.V., Lushington, A., Sun, Q., Yadegari, H., Wang, B., Xiao, W., Li, R., Sun, X.: Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 29(18), 1606663 (2017)

    [19] Luo, W., Lin, C.F., Zhao, O., Noked, M., Zhang, Y., Rubloff, G.W., Hu, L.: Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 7(2), 1601526 (2017)

    [20] Zhang, S., Zhao, Y., Zhao, F., Zhang, L., Wang, C., Li, X., Liang, J., Li, W., Sun, Q., Yu, C., Luo, J., Doyle-Davis, K., Li, R., Sham, T.K., Sun, X.: Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries. Adv. Func. Mater. 30(22), 2001118 (2020)

    [21] Wei, S., Choudhury, S., Xu, J., Nath, P., Tu, Z., Archer, L.A.: Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29(12), 1605512 (2017)

    [22] Hou, Z., Wang, W., Chen, Q., Yu, Y., Zhao, X., Tang, M., Zheng, Y., Quan, Z.: Hybrid protective layer for stable sodium metal anodes at high utilization. ACS Appl. Mater. Interfaces 11(41), 37693–37700 (2019)

    [23] Chu, C., Li, R., Cai, F., Bai, Z., Wang, Y., Xu, X., Wang, N., Yang, J., Dou, S.: Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 14(8), 4318–4340 (2021)

    [24] Yu, Y., Wang, Z., Hou, Z., Ta, W., Wang, W., Zhao, X., Li, Q., Zhao, Y., Zhang, Q., Quan, Z.: 3D printing of hierarchical graphene lattice for advanced Na metal anodes. ACS Appl. Energy Mater. 2(5), 3869–3877 (2019)

    [25] Yan, K., Zhao, S., Zhang, J., Safaei, J., Yu, X., Wang, T., Wang, S., Sun, B., Wang, G.: Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett. 20(8), 6112–6119 (2020)

    [26] Hu, X., Joo, P.H., Wang, H., Matios, E., Wang, C., Luo, J., Lu, X., Yang, K., Li, W.: Nip the sodium dendrites in the bud on planar doped graphene in liquid/gel electrolytes. Adv. Func. Mater. 29(9), 1807974 (2019)

    [27] Wang, H., Wang, C., Matios, E., Luo, J., Lu, X., Zhang, Y., Hu, X., Li, W.: Enabling ultrahigh rate and capacity sodium metal anodes with lightweight solid additives. Energy Storage Mater. 32, 244–252 (2020)

    [28] Yan, J., Zhi, G., Kong, D., Wang, H., Xu, T., Zang, J., Shen, W., Xu, J., Shi, Y., Dai, S., Li, X., Wang, Y.: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A Mater. Energy Sustain. 8(38), 19843–19854 (2020)

    [29] Kim, Y.J., Lee, J., Yuk, S., Noh, H., Chu, H., Kwack, H., Kim, S., Ryou, M.H., Kim, H.T.: Tuning sodium nucleation and stripping by the mixed surface of carbon nanotube-sodium composite electrodes for improved reversibility. J. Power Sour. 438, 227005 (2019)

    [30] Chi, S.S., Qi, X.G., Hu, Y.S., Fan, L.Z.: 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018)

    [31] Go, W., Kim, M.H., Park, J., Lim, C.H., Joo, S.H., Kim, Y., Lee, H.W.: Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 19(3), 1504–1511 (2019)

    [32] Zheng, X., Li, P., Cao, Z., Luo, W., Sun, F., Wang, Z., Ding, B., Wang, G., Huang, Y.: Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small 15(41), e1902688 (2019)

    [33] Liu, P., Yi, H., Zheng, S., Li, Z., Zhu, K., Sun, Z., Jin, T., Jiao, L.: Regulating deposition behavior of sodium ions for dendritefree sodium-metal anode. Adv. Energy Mater. 11(36), 2101976 (2021)

    [34] Li, W., Yao, H., Yan, K., Zheng, G., Liang, Z., Chiang, Y.M., Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6(1), 7436 (2015)

    [35] Wang, D.Y., Liu, R., Guo, W., Li, G., Fu, Y.: Recent advances of organometallic complexes for rechargeable batteries. Coord. Chem. Rev. 429, 213650 (2020)

    [36] Yamaki, J., Yamaji, A.: Phthalocyanine cathode materials for secondary lithium cells. J. Electrochem. Soc. 129(1), 5–9 (1982)

    [37] Crowther, O., Du, L.S., Moureau, D.M., Bicaku, I., Salomon, M., Lawson, J.W., Lucente, L.R., Mock, K., Fellner, J.P., Scanlon, L.G.: Effect of conductive carbon on capacity of iron phthalocyanine cathodes in primary lithium batteries. J. Power Sour. 217, 92–97 (2012)

    [38] Wang, H.G., Wang, H., Si, Z., Li, Q., Wu, Q., Shao, Q., Wu, L., Liu, Y., Wang, Y., Song, S., Zhang, H.: A bipolar and selfpolymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem. 58(30), 10204–10208 (2019)

    [39] Huang, W., Lin, Z., Liu, H., Na, R., Tian, J., Shan, Z.: Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium-sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17132–17141 (2018)

    [40] Yang, X.X., Du, W.Z., Li, X.T., Zhang, Y., Qian, Z., Biggs, M.J., Hu, C.: Cobalt (II) tetraaminophthalocyanine-modified multiwall carbon nanotubes as an efficient sulfur redox catalyst for lithium-sulfur batteries. ChemSusChem 13(11), 3034–3044 (2020)

    [41] Deyab, M., Mele, G.: Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery. J. Power Sour. 443, 227264 (2019)

    [42] Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Huang, Y., Wang, J., Wang, D., Goodenough, J.B.: A solutionphase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136(25), 8941–8946 (2014)

    [43] Aristov, V.Y., Molodtsova, O.V., Ossipyan, Y.A., Doyle, B.P., Nannarone, S., Knupfer, M.: Chemistry and electronic properties of ferromagnetic metal-organic semiconductor interfaces: Fe on CuPc. Phys. Status Solidi 206(12), 2763–2770 (2009)

    [44] Aristov, V.Y., Molodtsova, O.V., Zhilin, V.M., Ossipyan, Y.A., Vyalikh, D.V., Doyle, B.P., Nannarone, S., Knupfer, M.: Formation of sharp metal-organic semiconductor interfaces: Ag and Sn on CuPc. Eur. Phys. J. B 57(4), 379–384 (2007)

    [45] Molodtsova, O.V., Zhilin, V.M., Vyalikh, D.V., Aristov, V.Y., Knupfer, M.: Electronic properties of potassium-doped CuPc. J. Appl. Phys. 98(9), 093702 (2005)

    [46] Lian, X., Ma, Z., Zhang, Z., Yang, J., Liu, Y., Gu, C., Guo, R., Wang, Y., Ye, X., Sun, S., Zheng, Y., Ding, H., Hu, J., Cao, X., Mao, H., Zhu, J., Li, S., Chen, W.: Alkali metal storage mechanism in organic semiconductor of perylene-3,4,9,10-tetracarboxylicdianhydride. Appl. Surf. Sci. 524, 146396 (2020)

    [47] Lian, X., Ma, Z., Zhang, Z., Yang, J., Sun, S., Gu, C., Liu, Y., Ding, H., Hu, J., Cao, X., Zhu, J., Li, S., Chen, W.: An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group. Nano Res. 13(12), 3224–3229 (2020)

    [48] Powell, C.J.: The quest for universal curves to describe the surface sensitivity of electron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 47(1), 197–214 (1988)

    [49] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16 Rev. C.01. Gaussian Inc., Wallingford (2016)

    [50] Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    [51] Ding, H., Gao, Y.: Alkali metal doping and energy level shift in organic semiconductors. Appl. Surf. Sci. 252(11), 3943–3947 (2006)

    [52] Tang, J., Lee, C., Lee, S.: Chemical bonding and electronic structures at magnesium/copper phthalocyanine interfaces. Appl. Surf. Sci. 252(11), 3948–3952 (2006)

    [53] Ruocco, A., Evangelista, F., Gotter, R., Attili, A., Stefani, G.: Evidence of charge transfer at the Cu-phthalocyanine/Al(100) interface. J. Phys. Chem. C 112(6), 2016–2025 (2008)

    [54] Peisert, H., Knupfer, M., Schwieger, T., Fuentes, G.G., Olligs, D., Fink, J., Schmidt, T.: Fluorination of copper phthalocyanines: electronic structure and interface properties. J. Appl. Phys. 93(12), 9683–9692 (2003)

    [55] Cheng, C.P., Chen, W.Y., Wei, C.H., Pi, T.W.: Interfacial electronic structures of C60 molecules on a K-doped CuPc surface. Appl. Phys. Lett. 94(20), 203303 (2009)

    [56] Ding, H.J., Gao, Y.: Modification on the electronic structure of organic semiconductor by alkali metal. ECS Trans. 11(25), 1–13 (2008)

    [57] Schwieger, T., Peisert, H., Golden, M.S., Knupfer, M., Fink, J.: Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Phys. Rev. B 66(15), 155207 (2002)

    [58] Evangelista, F., Gotter, R., Mahne, N., Nannarone, S., Ruocco, A., Rudolf, P.: Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine. J. Phys. Chem. C 112(16), 6509–6514 (2008)

    [59] Gao, Y., Yan, L.: Cs doping and energy level shift in CuPc. Chem. Phys. Lett. 380(3–4), 451–455 (2003)

    [60] Shen, C., Kahn, A., Schwartz, J.: Role of metal-molecule chemistry and interdiffusion on the electrical properties of an organic interface: the Al-F16CuPc case. J. Appl. Phys. 90(12), 6236–6242 (2001)

    [61] Shima, M., Tsutsumi, K., Tanaka, A., Onodera, H., Tanemura, M.: Chemical state analysis using Auger parameters for XPS spectrum curve fitted with standard Auger spectra. Surf. Interface Anal. 50(11), 1187–1190 (2018)

    [62] Haidu, F., Gordan, O. D., Zahn, D. R. T., Smykalla, L., Hietschold, M., Senkovskiy, B. V., Mahns, B., Knupfer, M.: Electronic structure of manganese phthalocyanine modified via potassium intercalation: a comprehensive experimental study. arXiv: Chemical Physics (2017)

    [63] Watkins, N.J., Yan, L., Zorba, S., Gao, Y., Tang, C.W.: Evidence of electron and hole transfer in metal/CuPc interfaces. Org. Light-Emitting Mater. Devices VI 4800, 248–255 (2003)

    [64] Ding, H., Gao, Y.: Evolution of the electronic structure of alkali metal-doped copper-phthalocyanine (CuPc) on different metal substrates. Org. Electron. 11(11), 1786–1791 (2010)

    [65] Yan, L., Watkins, N.J., Zorba, S., Gao, Y., Tang, C.W.: Direct observation of Fermi-level pinning in Cs-doped CuPc film. Appl. Phys. Lett. 79(25), 4148–4150 (2001)

    [66] Shen, C., Kahn, A.: Electronic structure, diffusion, and p-doping at the Au/F16CuPc interface. J. Appl. Phys. 90(9), 4549–4554 (2001)

    Yuan Liu, Xu Lian, Zhangdi Xie, Jinlin Yang, Yishui Ding, Wei Chen. Probing fluorination promoted sodiophilic sites with model systems of F16CuPc and CuPc[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200
    Download Citation