[1] Tang, S., Qiu, Z., Wang, X.Y., Gu, Y., Zhang, X.G., Wang, W.W., Yan, J.W., Zheng, M.S., Dong, Q.F., Mao, B.W.: A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018)
[2] Fan, L., Li, X.: Recent advances in effective protection of sodium metal anode. Nano Energy 53, 630–642 (2018)
[3] Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X., Kim, J.K.: Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 27, 522–554 (2020)
[4] Bao, C., Wang, B., Liu, P., Wu, H., Zhou, Y., Wang, D., Liu, H., Dou, S.: Solid electrolyte interphases on sodium metal anodes. Adv. Func. Mater. 30(52), 2004891 (2020)
[5] Zhu, Y.-F., Xiao, Y., Dou, S.-X., Kang, Y.-M., Chou, S.-L.: Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 1(1), 13–27 (2021)
[6] Jin, T., Li, H., Zhu, K., Wang, P.F., Liu, P., Jiao, L.: Polyaniontype cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020)
[7] Doi, K., Yamada, Y., Okoshi, M., Ono, J., Chou, C.P., Nakai, H., Yamada, A.: Reversible sodium metal electrodes: is fluorine an essential interphasial component? Angew. Chem. 58(24), 8024–8028 (2019)
[8] Wang, S., Chen, Y., Jie, Y., Lang, S., Song, J., Lei, Z., Wang, S., Ren, X., Wang, D., Li, X., Cao, R., Zhang, G., Jiao, S.: Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 4(5), 1900856 (2020)
[9] Le, P.M., Vo, T.D., Pan, H., Jin, Y., He, Y., Cao, X., Nguyen, H.V., Engelhard, M.H., Wang, C., Xiao, J., Zhang, J.G.: Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Func. Mater. 30(25), 2001151 (2020)
[10] Lee, Y., Lee, J., Lee, J., Kim, K., Cha, A., Kang, S., Wi, T., Kang, S.J., Lee, H.W., Choi, N.S.: Fluoroethylene carbonate-based electrolyte with 1 M sodium bis (fluorosulfonyl) imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 10(17), 15270–15280 (2018)
[11] Wang, H., Wang, C., Matios, E., Li, W.: Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. 57(26), 7734–7737 (2018)
[12] Shi, Q., Zhong, Y., Wu, M., Wang, H., Wang, H.: High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew. Chem. 57(29), 9069–9072 (2018)
[13] Wang, H., Tong, Z., Yang, R., Huang, Z., Shen, D., Jiao, T., Cui, X., Zhang, W., Jiang, Y., Lee, C.S.: Batteries: electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 9(48), 1970190 (2019)
[14] Zheng, J., Chen, S., Zhao, W., Song, J., Engelhard, M.H., Zhang, J.G.: Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018)
[15] Xu, C., Lindgren, F., Philippe, B., Gorgoi, M., Bjorefors, F., Edstrom, K., Gustafsson, T.: Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27(7), 2591–2599 (2015)
[16] Tian, H., Shao, H., Chen, Y., Fang, X., Xiong, P., Sun, B., Notten, P.H., Wang, G.: Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 57, 692–702 (2019)
[17] Zhu, M., Wang, G., Liu, X., Guo, B., Xu, G., Huang, Z., Wu, M., Liu, H.K., Dou, S.X., Wu, C.: Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew. Chem. 59(16), 6596–6600 (2020)
[18] Zhao, Y., Goncharova, L.V., Lushington, A., Sun, Q., Yadegari, H., Wang, B., Xiao, W., Li, R., Sun, X.: Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 29(18), 1606663 (2017)
[19] Luo, W., Lin, C.F., Zhao, O., Noked, M., Zhang, Y., Rubloff, G.W., Hu, L.: Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 7(2), 1601526 (2017)
[20] Zhang, S., Zhao, Y., Zhao, F., Zhang, L., Wang, C., Li, X., Liang, J., Li, W., Sun, Q., Yu, C., Luo, J., Doyle-Davis, K., Li, R., Sham, T.K., Sun, X.: Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries. Adv. Func. Mater. 30(22), 2001118 (2020)
[21] Wei, S., Choudhury, S., Xu, J., Nath, P., Tu, Z., Archer, L.A.: Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29(12), 1605512 (2017)
[22] Hou, Z., Wang, W., Chen, Q., Yu, Y., Zhao, X., Tang, M., Zheng, Y., Quan, Z.: Hybrid protective layer for stable sodium metal anodes at high utilization. ACS Appl. Mater. Interfaces 11(41), 37693–37700 (2019)
[23] Chu, C., Li, R., Cai, F., Bai, Z., Wang, Y., Xu, X., Wang, N., Yang, J., Dou, S.: Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 14(8), 4318–4340 (2021)
[24] Yu, Y., Wang, Z., Hou, Z., Ta, W., Wang, W., Zhao, X., Li, Q., Zhao, Y., Zhang, Q., Quan, Z.: 3D printing of hierarchical graphene lattice for advanced Na metal anodes. ACS Appl. Energy Mater. 2(5), 3869–3877 (2019)
[25] Yan, K., Zhao, S., Zhang, J., Safaei, J., Yu, X., Wang, T., Wang, S., Sun, B., Wang, G.: Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett. 20(8), 6112–6119 (2020)
[26] Hu, X., Joo, P.H., Wang, H., Matios, E., Wang, C., Luo, J., Lu, X., Yang, K., Li, W.: Nip the sodium dendrites in the bud on planar doped graphene in liquid/gel electrolytes. Adv. Func. Mater. 29(9), 1807974 (2019)
[27] Wang, H., Wang, C., Matios, E., Luo, J., Lu, X., Zhang, Y., Hu, X., Li, W.: Enabling ultrahigh rate and capacity sodium metal anodes with lightweight solid additives. Energy Storage Mater. 32, 244–252 (2020)
[28] Yan, J., Zhi, G., Kong, D., Wang, H., Xu, T., Zang, J., Shen, W., Xu, J., Shi, Y., Dai, S., Li, X., Wang, Y.: 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A Mater. Energy Sustain. 8(38), 19843–19854 (2020)
[29] Kim, Y.J., Lee, J., Yuk, S., Noh, H., Chu, H., Kwack, H., Kim, S., Ryou, M.H., Kim, H.T.: Tuning sodium nucleation and stripping by the mixed surface of carbon nanotube-sodium composite electrodes for improved reversibility. J. Power Sour. 438, 227005 (2019)
[30] Chi, S.S., Qi, X.G., Hu, Y.S., Fan, L.Z.: 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018)
[31] Go, W., Kim, M.H., Park, J., Lim, C.H., Joo, S.H., Kim, Y., Lee, H.W.: Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 19(3), 1504–1511 (2019)
[32] Zheng, X., Li, P., Cao, Z., Luo, W., Sun, F., Wang, Z., Ding, B., Wang, G., Huang, Y.: Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small 15(41), e1902688 (2019)
[33] Liu, P., Yi, H., Zheng, S., Li, Z., Zhu, K., Sun, Z., Jin, T., Jiao, L.: Regulating deposition behavior of sodium ions for dendritefree sodium-metal anode. Adv. Energy Mater. 11(36), 2101976 (2021)
[34] Li, W., Yao, H., Yan, K., Zheng, G., Liang, Z., Chiang, Y.M., Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6(1), 7436 (2015)
[35] Wang, D.Y., Liu, R., Guo, W., Li, G., Fu, Y.: Recent advances of organometallic complexes for rechargeable batteries. Coord. Chem. Rev. 429, 213650 (2020)
[36] Yamaki, J., Yamaji, A.: Phthalocyanine cathode materials for secondary lithium cells. J. Electrochem. Soc. 129(1), 5–9 (1982)
[37] Crowther, O., Du, L.S., Moureau, D.M., Bicaku, I., Salomon, M., Lawson, J.W., Lucente, L.R., Mock, K., Fellner, J.P., Scanlon, L.G.: Effect of conductive carbon on capacity of iron phthalocyanine cathodes in primary lithium batteries. J. Power Sour. 217, 92–97 (2012)
[38] Wang, H.G., Wang, H., Si, Z., Li, Q., Wu, Q., Shao, Q., Wu, L., Liu, Y., Wang, Y., Song, S., Zhang, H.: A bipolar and selfpolymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem. 58(30), 10204–10208 (2019)
[39] Huang, W., Lin, Z., Liu, H., Na, R., Tian, J., Shan, Z.: Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium-sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain. 6(35), 17132–17141 (2018)
[40] Yang, X.X., Du, W.Z., Li, X.T., Zhang, Y., Qian, Z., Biggs, M.J., Hu, C.: Cobalt (II) tetraaminophthalocyanine-modified multiwall carbon nanotubes as an efficient sulfur redox catalyst for lithium-sulfur batteries. ChemSusChem 13(11), 3034–3044 (2020)
[41] Deyab, M., Mele, G.: Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery. J. Power Sour. 443, 227264 (2019)
[42] Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Huang, Y., Wang, J., Wang, D., Goodenough, J.B.: A solutionphase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136(25), 8941–8946 (2014)
[43] Aristov, V.Y., Molodtsova, O.V., Ossipyan, Y.A., Doyle, B.P., Nannarone, S., Knupfer, M.: Chemistry and electronic properties of ferromagnetic metal-organic semiconductor interfaces: Fe on CuPc. Phys. Status Solidi 206(12), 2763–2770 (2009)
[44] Aristov, V.Y., Molodtsova, O.V., Zhilin, V.M., Ossipyan, Y.A., Vyalikh, D.V., Doyle, B.P., Nannarone, S., Knupfer, M.: Formation of sharp metal-organic semiconductor interfaces: Ag and Sn on CuPc. Eur. Phys. J. B 57(4), 379–384 (2007)
[45] Molodtsova, O.V., Zhilin, V.M., Vyalikh, D.V., Aristov, V.Y., Knupfer, M.: Electronic properties of potassium-doped CuPc. J. Appl. Phys. 98(9), 093702 (2005)
[46] Lian, X., Ma, Z., Zhang, Z., Yang, J., Liu, Y., Gu, C., Guo, R., Wang, Y., Ye, X., Sun, S., Zheng, Y., Ding, H., Hu, J., Cao, X., Mao, H., Zhu, J., Li, S., Chen, W.: Alkali metal storage mechanism in organic semiconductor of perylene-3,4,9,10-tetracarboxylicdianhydride. Appl. Surf. Sci. 524, 146396 (2020)
[47] Lian, X., Ma, Z., Zhang, Z., Yang, J., Sun, S., Gu, C., Liu, Y., Ding, H., Hu, J., Cao, X., Zhu, J., Li, S., Chen, W.: An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group. Nano Res. 13(12), 3224–3229 (2020)
[48] Powell, C.J.: The quest for universal curves to describe the surface sensitivity of electron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 47(1), 197–214 (1988)
[49] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16 Rev. C.01. Gaussian Inc., Wallingford (2016)
[50] Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)
[51] Ding, H., Gao, Y.: Alkali metal doping and energy level shift in organic semiconductors. Appl. Surf. Sci. 252(11), 3943–3947 (2006)
[52] Tang, J., Lee, C., Lee, S.: Chemical bonding and electronic structures at magnesium/copper phthalocyanine interfaces. Appl. Surf. Sci. 252(11), 3948–3952 (2006)
[53] Ruocco, A., Evangelista, F., Gotter, R., Attili, A., Stefani, G.: Evidence of charge transfer at the Cu-phthalocyanine/Al(100) interface. J. Phys. Chem. C 112(6), 2016–2025 (2008)
[54] Peisert, H., Knupfer, M., Schwieger, T., Fuentes, G.G., Olligs, D., Fink, J., Schmidt, T.: Fluorination of copper phthalocyanines: electronic structure and interface properties. J. Appl. Phys. 93(12), 9683–9692 (2003)
[55] Cheng, C.P., Chen, W.Y., Wei, C.H., Pi, T.W.: Interfacial electronic structures of C60 molecules on a K-doped CuPc surface. Appl. Phys. Lett. 94(20), 203303 (2009)
[56] Ding, H.J., Gao, Y.: Modification on the electronic structure of organic semiconductor by alkali metal. ECS Trans. 11(25), 1–13 (2008)
[57] Schwieger, T., Peisert, H., Golden, M.S., Knupfer, M., Fink, J.: Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Phys. Rev. B 66(15), 155207 (2002)
[58] Evangelista, F., Gotter, R., Mahne, N., Nannarone, S., Ruocco, A., Rudolf, P.: Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine. J. Phys. Chem. C 112(16), 6509–6514 (2008)
[59] Gao, Y., Yan, L.: Cs doping and energy level shift in CuPc. Chem. Phys. Lett. 380(3–4), 451–455 (2003)
[60] Shen, C., Kahn, A., Schwartz, J.: Role of metal-molecule chemistry and interdiffusion on the electrical properties of an organic interface: the Al-F16CuPc case. J. Appl. Phys. 90(12), 6236–6242 (2001)
[61] Shima, M., Tsutsumi, K., Tanaka, A., Onodera, H., Tanemura, M.: Chemical state analysis using Auger parameters for XPS spectrum curve fitted with standard Auger spectra. Surf. Interface Anal. 50(11), 1187–1190 (2018)
[62] Haidu, F., Gordan, O. D., Zahn, D. R. T., Smykalla, L., Hietschold, M., Senkovskiy, B. V., Mahns, B., Knupfer, M.: Electronic structure of manganese phthalocyanine modified via potassium intercalation: a comprehensive experimental study. arXiv: Chemical Physics (2017)
[63] Watkins, N.J., Yan, L., Zorba, S., Gao, Y., Tang, C.W.: Evidence of electron and hole transfer in metal/CuPc interfaces. Org. Light-Emitting Mater. Devices VI 4800, 248–255 (2003)
[64] Ding, H., Gao, Y.: Evolution of the electronic structure of alkali metal-doped copper-phthalocyanine (CuPc) on different metal substrates. Org. Electron. 11(11), 1786–1791 (2010)
[65] Yan, L., Watkins, N.J., Zorba, S., Gao, Y., Tang, C.W.: Direct observation of Fermi-level pinning in Cs-doped CuPc film. Appl. Phys. Lett. 79(25), 4148–4150 (2001)
[66] Shen, C., Kahn, A.: Electronic structure, diffusion, and p-doping at the Au/F16CuPc interface. J. Appl. Phys. 90(9), 4549–4554 (2001)