• Advanced Photonics Nexus
  • Vol. 4, Issue 2, 026006 (2025)
Ram Nandan Kumar1,*, Sauvik Roy1, Subhasish Dutta Gupta1,2,3, Nirmalya Ghosh1,*, and Ayan Banerjee1,*
Author Affiliations
  • 1Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Mohanpur, India
  • 2Tata Institute of Fundamental Research, Hyderabad, India
  • 3Indian Institute of Technology, Department of Physics, Jodhpur, India
  • show less
    DOI: 10.1117/1.APN.4.2.026006 Cite this Article Set citation alerts
    Ram Nandan Kumar, Sauvik Roy, Subhasish Dutta Gupta, Nirmalya Ghosh, Ayan Banerjee, "Spatially resolved spin angular momentum mediated by spin–orbit interaction in tightly focused spinless vector beams in optical tweezers," Adv. Photon. Nexus 4, 026006 (2025) Copy Citation Text show less
    References

    [1] K. Y. Bliokh, Y. S. Kivshar, F. Nori. Magnetoelectric effects in local light-matter interactions. Phys. Rev. Lett., 113, 033601(2014).

    [2] K. Y. Bliokh. Geometrodynamics of polarized light: berry phase and spin Hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt., 11, 094009(2009).

    [3] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys., 15, 033026(2013).

    [4] D. L. Andrews, M. Babiker. The Angular Momentum of Light(2012).

    [5] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [6] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [7] M. Onoda, S. Murakami, N. Nagaosa. Hall effect of light. Phys. Rev. Lett., 93, 083901(2004).

    [8] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [9] C. Leyder et al. Observation of the optical spin Hall effect. Nat. Phys., 3, 628-631(2007).

    [10] S. Fu et al. Spin-orbit optical Hall effect. Phys. Rev. Lett., 123, 243904(2019).

    [11] J. S. Eismann et al. Enhanced spin–orbit coupling in an epsilon-near-zero material. Optica, 9, 1094-1099(2022).

    [12] R. N. Kumar et al. Probing the rotational spin-Hall effect in a structured Gaussian beam. Phys. Rev. A, 105, 023503(2022).

    [13] A. Aiello et al. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [14] M. Neugebauer et al. Measuring the transverse spin density of light. Phys. Rev. Lett., 114, 063901(2015).

    [15] A. B. Stilgoe, T. A. Nieminen, H. Rubinsztein-Dunlop. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photonics, 16, 346-351(2022).

    [16] D. Pal et al. Direct observation of the effects of spin dependent momentum of light in optical tweezers. APL Photonics, 5, 086106(2020).

    [17] J. Chen et al. Spin–orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket. ACS Photonics, 9, 793-799(2022).

    [18] Z. Shao et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun., 9, 1-11(2018).

    [19] J. K. Nayak et al. Spin-direction-spin coupling of quasiguided modes in plasmonic crystals. Phys. Rev. Lett., 131, 193803(2023).

    [20] R. N. Kumar et al. Inhomogeneous-spin-momentum-induced orbital motion of birefringent particles in tight focusing of vector beams in optical tweezers. Phys. Rev. A, 110, 023512(2024).

    [21] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [22] L.-P. Yang, Z. Jacob. Non-classical photonic spin texture of quantum structured light. Commun. Phys., 4, 221(2021).

    [23] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [24] Y. Li et al. Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces. Opt. Express, 23, 1767-1774(2015).

    [25] X. Yin et al. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [26] Y.-J. Wu et al. Controllable microparticle spinning via light without spin angular momentum. Phys. Rev. Lett., 132, 253803(2024).

    [27] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 5, 3300(2014).

    [28] H. He et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826(1995).

    [29] R. N. Kumar et al. Probing dual asymmetric transverse spin angular momentum in tightly focused vector beams in optical tweezers. Laser Photonics Rev., 18, 2300189(2024).

    [30] S. Roy et al. Observation of Larmor-like precession of a single birefringent particle due to spin-dependent forces in tilted optical tweezers. Appl. Phys. Lett., 125, 071106(2024).

    [31] Y. Zeng et al. Tightly focused optical skyrmions and merons formed by electric-field vectors with prescribed characteristics. Nanophotonics, 13, 251-261(2024).

    [32] C.-D. Zhou et al. Polarization-encoded structured light generation based on holographic metasurface. Plasmonics, 18, 653-659(2023).

    [33] D. O’Connor et al. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun., 5, 5327(2014).

    [34] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [35] M. V. Berry. Optical currents. J. Opt. A: Pure Appl. Opt., 11, 094001(2009).

    [36] M. Beresna et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett., 98, 201101(2011).

    [37] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [38] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [39] J. Zeng et al. Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy. ACS Photonics, 5, 390-397(2018).

    [40] S. D. Gupta, N. Ghosh, A. Banerjee. Wave Optics: Basic Concepts and Contemporary Trends(2015).

    [41] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [42] P. Gregg et al. Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing. Nat. Commun., 10, 4707(2019).

    [43] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [44] S. Pirandola et al. Advances in photonic quantum sensing. Nat. Photonics, 12, 724-733(2018).

    [45] C. H. Bennett, D. P. DiVincenzo. Quantum information and computation. Nature, 404, 247-255(2000).

    [46] T. D. Ladd et al. Quantum computers. Nature, 464, 45-53(2010).

    [47] Y. Ren et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci. Rep., 6, 33306(2016).

    [48] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [49] A. O’neil et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [50] H.-C. Liu et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv., 3, e1701477(2017).

    [51] A. Nicolas et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics, 8, 234-238(2014).

    [52] P. Török, P. Munro. The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express, 12, 3605-3617(2004).

    [53] C. Peters, A. Forbes. Controlling the hidden parity in vectorial light with metasurfaces. Adv. Photonics, 6, 040501(2024).

    [54] R. Borghi, M. Santarsiero, M. A. Alonso. Highly focused spirally polarized beams. JOSA A, 22, 1420-1431(2005).

    [55] V. Ramírez-Sánchez, G. Piquero, M. Santarsiero. Generation and characterization of spirally polarized fields. J. Opt. A: Pure Appl. Opt., 11, 085708(2009).

    [56] X. Xu, M. Nieto-Vesperinas. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett., 123, 233902(2019).

    [57] M. Veysi, C. Guclu, F. Capolino. Focused azimuthally polarized vector beam and spatial magnetic resolution below the diffraction limit. J. Opt. Soc. Am. B, 33, 2265-2277(2016).

    [58] J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: a review. Adv. Photonics, 3, 064001(2021).

    [59] J. Pu, Z. Zhang. Tight focusing of spirally polarized vortex beams. Opt. Laser Technol., 42, 186-191(2010).

    [60] Z. Gu et al. An interferential method for generating polarization-rotatable cylindrical vector beams. Opt. Commun., 286, 6-12(2013).

    [61] B. Roy et al. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J. Phys., 16, 083037(2014).

    [62] B. Roy et al. Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap. Phys. Rev. A, 87, 043823(2013).

    [63] J.-A. Lv et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 537, 179-184(2016).

    [64] P.-G. De Gennes, J. Prost. The Physics of Liquid Crystals(1993).

    [65] I. Muševič. Liquid Crystal Colloids(2017).

    [66] E. Brasselet et al. Optical vortices from liquid crystal droplets. Phys. Rev. Lett., 103, 103903(2009).

    [67] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 253, 358-379(1959).

    [68] W. Shu et al. Three-dimensional spin Hall effect of light in tight focusing. Phys. Rev. A, 101, 023819(2020).

    [69] E. Zauderer. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J. Opt. Soc. Am. A, 3, 465-469(1986).

    Ram Nandan Kumar, Sauvik Roy, Subhasish Dutta Gupta, Nirmalya Ghosh, Ayan Banerjee, "Spatially resolved spin angular momentum mediated by spin–orbit interaction in tightly focused spinless vector beams in optical tweezers," Adv. Photon. Nexus 4, 026006 (2025)
    Download Citation