• Frontiers of Optoelectronics
  • Vol. 7, Issue 3, 300 (2014)
Xiaowei GUAN, Hao WU, and Daoxin DAI*
Author Affiliations
  • State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1007/s12200-014-0435-1 Cite this Article
    Xiaowei GUAN, Hao WU, Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Frontiers of Optoelectronics, 2014, 7(3): 300 Copy Citation Text show less
    References

    [1] Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal on Selected Topics in Quantum Electronics, 2005, 11(1): 232–240

    [2] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211

    [3] Thylen L, Qiu M, Anand S. Photonic crystals—a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283

    [4] Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y. Propagation loss measurement for surface plasmonpolariton modes at metal waveguides on semiconductor substrates. Applied Physics Letters, 2004, 84(6): 852–854

    [5] Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Optics Express, 2005, 13(3): 977–984

    [6] Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2004, 21(12): 2442–2446

    [7] Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Optics Letters, 2004, 29(17): 1992–1994

    [8] Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160

    [9] Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Optics Express, 2005, 13(1): 256–266

    [10] Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101-1–211101-3

    [11] Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071

    [12] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511

    [13] Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188

    [14] Xiao S S, Liu L, Qiu M. Resonator channel drop filters in a plasmon-polaritons metal. Optics Express, 2006, 14(7): 2932–2937

    [15] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650

    [16] Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102-1–131102-3

    [17] Zia R, Schuller A J, Chandran A, Brongersma L M. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7–8): 21–27

    [18] Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference. Baltimore, 2007, JThD112

    [19] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496–500

    [20] Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364

    [21] Dai D X, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653

    [22] Dai D X, Yang L. Proposal of a thermally-tunable silicon-oninsulator microring resonator filter. In: Proceedings of Asia Optical Fiber Communication & Optoelectrnic Exposition & Conference. Shanghai, 2007, 582–583

    [23] Feng N N, Brongersma M L, Negro L D. Metal-dielectric slotwaveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE Journal of Quantum Electronics, 2007, 43(6): 479–485

    [24] Wang Z, Dai D X, Shi Y, Somesfalean G, Holmstrom P, Thylen L, He S, Wosinski L. Experimental realization of a low-loss nanoscale Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, 2011

    [25] Zhou G, Wang T, Pan C, Hui X, Liu F F, Su Y K. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. In: Group Four Photonics. Beijing, 2010

    [26] Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544

    [27] Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C L, Akerman J, Tong L M, Qiu M. Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97(23): 231121-1–231121-3

    [28] Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9

    [29] Bian Y S, Gong Q H. Multilayer metal-dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm. Journal of Optics, 2014, 16(1): 015001-1–015001-12

    [30] Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L, Gao D S. A silicon-based 3-D hybrid long-rang plasmonic waveguide for nanophotonic integrating. Journal of Lightwave Technology, 2012, 30(1): 163–168

    [31] Noghani M T, Samiei M H V. Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics, 2013, 8(2): 1155–1168

    [32] Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. Journal of Optics, 2013, 15(5): 055011-1–055011-6

    [33] Bian Y S, Gong Q. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement. Applied Optics, 2013, 52(23): 5733–5741

    [34] Bian Y S, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920

    [35] Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036

    [36] Kou Y, Ye F W, Chen X F. Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Optics Express, 2011, 19(12): 11746–11752

    [37] Hao R, Li E P, Wei X C. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934–2936

    [38] Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439

    [39] Lu Q, Chen D, Wu G. Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire. Optics Communications, 2013, 289: 64–68

    [40] Lou F, Wang Z, Dai D, Thylen L, Wosinski L. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Applied Physics Letters, 2012, 100(24): 241105-1–241105-4

    [41] Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979

    [42] Horvath C, Bachman D, Wu M, Perron D, Van V. Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technology Letters, 2011, 23(17): 1267–1269

    [43] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632

    [44] Su Y, Zheng Z, Bian Y S, Liu Y, Liu J S, Zhu J S, Zhou T. Lowloss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement. Micro & Nano Letters, 2011, 6(8): 643–645

    [45] Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express, 2010, 18(11): 11728–11736

    [46] Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge. Physica Status Solidi A, 2013, 210(7): 1424–1428

    [47] Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a lowindex or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936

    [48] Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3

    [49] Dai D X, He S L. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966

    [50] Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393

    [51] Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483

    [52] Kwon M S, Shin J S, Shin S Y, Lee W G. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. Optics Express, 2012, 20(20): 21875–21887

    [53] Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters, 2011, 98(2): 021107-1–021107-3

    [54] Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902

    [55] Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters, 2011, 36(15): 2946–2948

    [56] Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311-1–4800311-11

    [57] Li H, Noh J W, Chen Y, Li M. Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21(10): 11839–11851

    [58] Xiao J, Liu J, Zheng Z, Bian Y, Wang G, Li S. Low-loss metalinsulator-semiconductor waveguide with an air core for on-chip integration. Optics Communications, 2012, 285(17): 3604–3607

    [59] Guan X, Chen P, Wang X, Wosinski L, Shi Y, Dai D. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides. In: Proceedings of Asia Communications and Photonics Conference. Guangzhou, 2012

    [60] Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Optics Communications, 2011, 284(1): 480–484

    [61] Alam M Z, Caspers J N, Aitchison J S, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Optics Express, 2013, 21(13): 16029–16034

    [62] Noghani M T, Samiei M H V. Ultrashort hybrid metal-insulator plasmonic directional coupler. Applied Optics, 2013, 52(31): 7498–7503

    [63] Li Q, Song Y, Zhou G, Su Y K, Qiu M. Asymmetric plasmonicdielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35(19): 3153–3155

    [64] Zhu S, Lo G Q, Kwong D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express, 2012, 20(6): 5867–5881

    [65] Zhu S, Lo G Q, Kwong D L. Experiment demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform. IEEE Photonics Technology Letters, 2012, 24(14): 1224–1226

    [66] Chu H S, Bai P, Li E P, Hoefer W R J. Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics, 2011, 6(3): 591–597

    [67] Song Y, Wang J, Yan M, Qiu M. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics, 2011, 13(7): 075002-1–075002-8

    [68] Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmstrom P, Wosinski L, Thylen L, Dai D. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides. Optics Express, 2011, 19(2): 838–847

    [69] Xiao J, Liu J, Zheng Z, Bian Y, Wang G. Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide. Journal of Optics, 2011, 13(10): 105001

    [70] Shin J S, Kwon M S, Lee C H, Shin S Y. Investigation and improvement of 90° direct bends of metal-insulator-siliconinsulator-metal waveguides. IEEE Photonics Journal, 2013, 5(5): 6601909-1–6601909-5

    [71] Dai D, Shi Y, He S, Wosinski L, Thylen L. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Optics Express, 2011, 19(24): 23671–23682

    [72] Chu H S, Akimov Y, Bai P, Li E P. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37(21): 4564–4566

    [73] Zhu S, Lo G Q, Kwong D L. Performance of ultracompact coppercapped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Optics Express, 2012, 20(14): 15232–15246

    [74] Zhu S, Lo G, Kwong D L. Towards athermal nanoplasmonic resonators based on Cu-TiO2-Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim, 2013

    [75] Zhu S, Lo G Q, Kwong D L. Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius. IEEE Photonics Technology Letters, 2011, 23(24): 1896–1898

    [76] Lou F, Thylen L, Wosinski L. Hybrid plasmonic microdisk resonators for optical interconnect applications. In: Integrated Optics: Physics and Simulations. Prague: Society of Photo-Optical Instrumentation Engineers, 2013

    [77] Song Y,Wang J, Yan M, Qiu M. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. Journal of Optics, 2011, 13(7): 075001-1–075001-5

    [78] Xu P, Huang Q, Shi Y. Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Optics Communications, 2013, 289: 81–84

    [79] Yang X, Ishikawa A, Yin X, Zhang X. Hybrid photonic-plasmonic crystal nanocavities. ACS Nano, 2011, 5(4): 2831–2838

    [80] Yu P, Qi B, Xu C, Hu T, Jiang X Q, Wang M H, Yang J Y. An improved surface-plasmonic nanobeam cavity for higher Q and smaller V. Chinese Science Bulletin, 2012, 57(25): 3371–3374

    [81] Alam M, Aitchsion J S, Mojahedi M. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 2011, 50(15): 2294–2298

    [82] Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Beijing, 2013, ATh4A

    [83] Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact and ultrabroadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco, 2014, 8988

    [84] Alam M Z, Aitchison J S, Mojahedi M. Compact and silicon-oninsulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 2012, 37(1): 55–57

    [85] Huang Y, Zhu S, Zhang H, Liow T Y, Lo G Q. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 2013, 21(10): 12790–12796

    [86] Sun X, Alam M Z, Wagner S J, Aitchison J S, Mojahedi M. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 2012, 37(23): 4814–4816

    [87] Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355

    [88] Gao L F, Hu F F, Wang X J, Tang L X, Zhou Z P. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling. Applied Physics. B, Lasers and Optics, 2013, 113(2): 199–203

    [89] Guan X W, Wu H, Shi Y C, Wosinski L, Dai D X. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008

    [90] Lou F, Dai D X, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374

    [91] Sun B, Chen M Y, Zhang Y K, Zhou J. An ultracompact hybrid plasmonic waveguide polarization beam splitter. Applied Physics B, Lasers and Optics, 2013, 113(2): 179–183

    [92] Guan X W,Wu H, Shi Y C, Dai D X. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262

    [93] Caspers J N, Alam M Z, Mojahedi M. Compact hybrid plasmonic polarization rotator. Optics Letters, 2012, 37(22): 4615–4617

    [94] Caspers J N, Aitchison J S, Mojahedi M. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Optics Letters, 2013, 38(20): 4054–4057

    [95] Gao L, Huo Y, Harris J S, Zhou Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084

    [96] Song Y,Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179

    [97] Zhu S, Lo G, Kwong D. Analysis of ultracompact silicon electrooptic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator. In: Proceedings of Photonics Global Conference. Singapore, 2012

    [98] Ooi K J A, Bai P, Chu H, Ang L K. Vandium dioxide active plasmonics. In: Proceedings of Photonics Global Conference. Singapore, 2012

    [99] Sun X M, Zhou L J, Li X W, Hong Z H, Liu S, Chen J P. Miniature intensity modulator based on a silicon-polymer hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics and Optoelectronics Meetings. Shanghai, 2011, 8333

    [100] Lou F, Dai D X, Thylen L, Wosinski L. Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Optics Express, 2013, 21(17): 20041–20051

    [101] Dalton L R, Robinson B, Jen A, Ried P, Eichinger B, Sullivan P, Akelaitis A, Bale D, Haller M, Luo J, Liu S, Liao Y, Firestone K, Bhatambrekar N, Bhattacharjee S, Sinness J, Hammond S, Buker N, Snoeberger R, Lingwood M, Rommel H, Amend J, Jang S H, Chen A, Steier W. Electro-optic coefficients of 500 pm/V and beyond for organic materials. In: Proceeding of SPIE 5935, Linear and Nonlinear Optics of Organic Materials V. 2005

    [102] Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 50(20): 3428–3434

    [103] Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A

    [104] Bahrami F, Alam M Z, Aitchison J S, Mojahedi M. Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics, 2013, 8(2): 465–473

    [105] Kwon M S. Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics, 2010, 5(4): 347–354

    [106] Zhou L J, Sun X M, Li X W, Chen J P. Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors (Basel, Switzerland), 2011, 11(7): 6856–6867

    [107] Zhang L, Shu Y. Modified hybrid plasmonic waveguides as tunable optical tweezers. Chinese Physics Letters, 2013, 30(3): 034208-1–034208-4

    [108] Yang X, Liu Y, Oulton R F, Yin X, Zhang X. Optical forces in hybrid plasmonic waveguides. Nano Letters, 2011, 11(2): 321–328

    [109] Guan X, Wu H, Dai D. Silicon hybrid surface plasmonic nanooptics-waveguide and integrated devices. Chinese Journal of Optics and Applied Optics, 2014, 7(2): 181–196

    [110] Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electricallypumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364

    [111] Dong P, Feng N N, Feng D, Qian W, Liang H, Lee D C, Luff B J, Banwell T, Agarwal A, Toliver P, Menendez R, Woodward T K, Asghari M. GHz-bandwidth optical filters based on high-order silicon ring resonators. Optics Express, 2010, 18(23): 23784–23789

    [112] Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327

    [113] Wang J W, Dai D X. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Optics Letters, 2010, 35(24): 4229–4231

    [114] Dekker R, Usechak N, Forst M, Driessen A. Ultrafast nonlinear alloptical processes in silicon-on-insulator waveguides. Journal of Physics D, 2007, 40(14): R249–R271

    [115] Dai D X, Liu L, Gao S M, Xu D X, He S L. Polarization management for silicon photonic integrated circuits. Laser Photonics Review, 2013, 7(3): 303–328

    [116] Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Optics Express, 2012, 20(12): 13425–13439

    [117] Wang Z W, Dai D X. Ultrasmall Si-nanowire based polarization rotator. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(5): 747–753

    [118] Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757

    [119] Mote R G, Chu H S, Bai P, Li E P. Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285(18): 3709–3713

    [120] Choi S E, Kim J T. Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Optics Communications, 2012, 285(18): 3735–3739

    [121] Shi P, Zhou G, Chau F S. Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(6): 1426–1431

    [122] De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photonics, 2010, 4(6): 382–387

    [123] Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N, Podolskiy V A. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806

    [124] Ambati M, Nam S H, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Observation of stimulated emission of surface plasmon polaritons. Nano Letters, 2008, 8(11): 3998–4001

    [125] van den Hoven G N, Koper R J I M, Polman A, van Dam C, van Uffelen JWM, Smit M K. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Applied Physics Letters, 1996, 68(14): 1886–1888

    [126] Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Letters, 2009, 9(8): 2935–2939

    [127] Nezhad M, Tetz K, Fainman Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Optics Express, 2004, 12(17): 4072–4079

    [128] Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Optics Express, 2009, 17(10): 8548–8551

    [129] Bolger P M, Dickson W, Krasavin A V, Liebscher L, Hickey S G, Skryabin D V, Zayats A V. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Optics Letters, 2010, 35(8): 1197–1199

    [130] Seidel J, Grafstrom S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Physical Review Letters, 2005, 94(17): 177401

    [131] Radko I, Nielsen M G, Albrektsen O, Bozhevolnyi S I. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. Optics Express, 2010, 18(18): 18633–18641

    [132] Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444

    [133] GatherMC, Meerholz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010, 4(7): 457–461

    [134] Rao R J, Tang T T. Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. Journal of Physics. D, Applied Physics, 2012, 45(24): 245101

    [135] Zhang J, Cai L, Bai W L, Xu Y, Song G F. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Optics Letters, 2011, 36(12): 2312–2314

    [136] Zhu N, Mei T. Study of an SPP mode with gain medium based on a hybrid plasmonic structure. In: Proceedings of Asia Communications and Photonics Conference (ACP). Guangzhou, 2012, AF4A.17

    [137] Gao L F, Tang L X, Hu F F, Guo R M,Wang X J, Zhou Z P. Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics Express, 2012, 20(10): 11487–11495

    [138] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X. Roomtemperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials, 2011, 10(2): 110–113

    [139] Zhu S, Lo G Q, Kwong D L. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator. Optics Express, 2013, 21(10): 12699–12712

    [140] Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A

    [141] Zhang J, Cassan E, Zhang X. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth. Optics Letters, 2013, 38(12): 2089–2091

    [142] Aldawsari S, West B R. Hybrid plasmonic waveguides for nonlinear applications. In: Proceedings of Photonics Global Conference. Singapore, 2012

    [143] Pitilakis A, Kriezis E E. Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(7): 1954–1965

    [144] Perron D, Wu M, Horvath C, Bachman D, Van V. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Optics Letters, 2011, 36(14): 2731–2733

    [145] Lu C C, Hu X Y, Yue S, Fu Y L, Yang H, Gong Q H. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics, 2013, 8(2): 749–754

    [146] Li F, Xu M, Hu X F,Wu J Y,Wang T, Su Y K. Monolithic siliconbased 16-QAM modulator using two plasmonic phase shifters. Optics Communications, 2013, 286: 166–170

    [147] Luo Y, Chamanzar M, Eftekhar A A, Adibi A. Dual structures for ultra-compact on-chip plasmonic light concentration on silicon platforms. In: Proceedings of IEEE Photonics Conference, Burlingame, 2012, 682–683

    [148] Zhu N, Mei T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating. Optics Communications, 2013, 298-299: 120–124

    [149] Ketzaki D A, Tsilipakos O, Yioultsis T V, Kriezis E E. Electromagnetically induced transparency with hybrid siliconplasmonic traveling-wave resonators. Journal of Applied Physics, 2013, 114(11): 11317-1–11317-8

    [150] Zhu N, Mei T. Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure. Optics Letters, 2012, 37(10): 1751–1753

    [151] Akimov Y A, Chu H S. Plasmon-plasmon interaction: controlling light at nanoscale. Nanotechnology, 2012, 23(44): 444004

    [152] Hu Y W, Li B B, Liu Y X, Xiao Y F, Gong Q. Hybrid photonicplasmonic mode for refractometer and nanoparticle trapping. Optics Communications, 2013, 291: 380–385

    [153] Lanzillotti-Kimura N D, Zentgraf T, Zhang X. Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045309-1–045309-6

    [154] Zhang T, Chen L, Li X. Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based “trapped rainbow” system. Optics Communications, 2013, 301-302: 116–120

    [155] Zhu S, Lo G Q, Kwong D L. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulatorsilicon-insulator-metal nanoplasmonic slot waveguide. Optics Express, 2011, 19(17): 15843–15854

    [156] He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics, 2012, 7(3): 571–577

    Xiaowei GUAN, Hao WU, Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Frontiers of Optoelectronics, 2014, 7(3): 300
    Download Citation