• Photonics Research
  • Vol. 3, Issue 5, B47 (2015)
Ananth Z. Subramanian1、2、*, Eva Ryckeboer1、2, Ashim Dhakal1、2, Frédéric Peyskens1、2, Aditya Malik1、2, Bart Kuyken1、2, Haolan Zhao1、2, Shibnath Pathak1、3, Alfonso Ruocco1、2, Andreas De Groote1、2, Pieter Wuytens1、2、4, Daan Martens1、2, Francois Leo1、2, Weiqiang Xie1、2, Utsav Deepak Dave1、2, Muhammad Muneeb1、2, Pol Van Dorpe5, Joris Van Campenhout5, Wim Bogaerts1、2, Peter Bienstman1、2, Nicolas Le Thomas1、2, Dries Van Thourhout1、2, Zeger Hens2、6, Gunther Roelkens1、2, and Roel Baets1、2
Author Affiliations
  • 1Photonics Research Group INTEC Department, Ghent University-imec, Ghent 9000, Belgium
  • 2Centre for Nano and Biophotonics, Ghent University, Ghent, Belgium
  • 3University of California, Davis, California 95616, USA
  • 4Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
  • 5imec, Kapeldreef 75, B-3001 Leuven, Belgium
  • 6Physics and Chemistry of Nanostructures, Ghent University, B-9000 Ghent, Belgium
  • show less
    DOI: 10.1364/prj.3.000b47 Cite this Article Set citation alerts
    Ananth Z. Subramanian, Eva Ryckeboer, Ashim Dhakal, Frédéric Peyskens, Aditya Malik, Bart Kuyken, Haolan Zhao, Shibnath Pathak, Alfonso Ruocco, Andreas De Groote, Pieter Wuytens, Daan Martens, Francois Leo, Weiqiang Xie, Utsav Deepak Dave, Muhammad Muneeb, Pol Van Dorpe, Joris Van Campenhout, Wim Bogaerts, Peter Bienstman, Nicolas Le Thomas, Dries Van Thourhout, Zeger Hens, Gunther Roelkens, Roel Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited][J]. Photonics Research, 2015, 3(5): B47 Copy Citation Text show less
    References

    [1] W. Jin, Y. Cao, F. Yan, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 1–8 (2014).

    [2] D. B. Hu and Z. M. Qi, “Refractive-index-enhanced Raman spectroscopy and absorptiometry of ultrathin film overlaid on an optical waveguide,” J. Phys. Chem. C 117, 16175–16181 (2013).

    [3] S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).

    [4] W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).

    [5] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and labelfree biosensing,” Opt. Express 15, 7610–7615 (2007).

    [6] L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).

    [7] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).

    [8] W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).

    [9] S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).

    [10] S. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform,” in Optical Fiber Communication Conference (OFC 2014) (2014), paper Th2A.33.

    [11] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).

    [12] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).

    [13] M. Pantouvaki, H. Yu, M. Rakowski, P. Christie, P. Verheyen, G. Lepage, N. Van Hoovels, P. Absil, and J. Van Campenhout, “Comparison of silicon ring modulators with interdigitated and lateral PN junctions,” IEEE J. Sel. Top. Quantum Electron. 19, 7900308 (2013).

    [14] S. Keyvaninia, S. Verstuyft, L. Van Landschoot, D. Van Thourhout, G. Roelkens, G. Duan, F. Lelarge, J. M. Fedeli, S. Messaoudene, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, and M. Smit, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).

    [15] http://www.europractice c.com/SiPhotonics_general.php.

    [16] A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).

    [17] A. Schliesser, N. Picqué, and T. W. H nsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).

    [18] G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).

    [19] Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).

    [20] M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).

    [21] A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479– 28488 (2014).

    [22] E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Opt. Express 5, 1636–1648 (2014).

    [23] A. Amerov, J. Chen, and M. Arnold, “Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum,” Appl. Spectrosc. 58, 1195–1204 (2004).

    [24] A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).

    [25] A. Dhakal, A. Z. Subramanian, N. L. Thomas, and R. Baets, “The role of index contrast in the efficiency of absorption and emission of a luminescent particle near a slab waveguide,” in 16th European Conference on Integrated Optics (2012), p. 131.

    [26] Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009).

    [27] A. Dhakal, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Enhanced spontaneous Raman signal collected evanescently by silicon nitride slot waveguides,” in CLEO: Science and Innovations (2015), paper STh4H.3.

    [28] A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).

    [29] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).

    [30] M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20, 17402–17410 (2012).

    [31] F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).

    [32] P. C. Wuytens, A. M. Yashchenok, A. Z. Subramanian, A. G. Skirtach, and R. Baets, “Gold nanoparticle coated silicon nitride chips for intracellular surface-enhanced Raman spectroscopy,” in CLEO: Science and Innovations (2014), paper STh4H.7.

    [33] P. C. Wuytens, A. M. Yashchenok, A. Z. Subramanian, R. Baets, and A. G. Skirtach, “Label-free monitoring of microcapsuleenabled intracellular release using gold-nanoparticle coated microchips,” in Proceedings of Surface Enhanced Spectroscopies (2014), pp. 158–159.

    [34] R. Gómez-Martínez, A. M. Hernández-Pinto, M. Duch, P. Vázquez, K. Zinoviev, E. J. de la Rosa, J. Esteve, T. Suárez, and J. A. Plaza, “Silicon chips detect intracellular pressure changes in living cells,” Nat. Nanotechnol. 8, 517–521 (2013).

    [35] N. Savage, “Spectrometers,” Nat. Photonics 3, 601–602 (2009).

    [36] S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 1–9 (2014).

    [37] S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).

    [38] S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design tradeoffs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38, 2961–2964 (2013).

    [39] S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI aperture,” J. Lightwave Technol. 31, 87–93 (2013).

    [40] A. Ruocco, D. Van Thourhout, and W. Bogaerts, “Silicon photonic spectrometer for accurate peak detection using the Vernier effect and time-domain multiplexing,” J. Lightwave Technol. 32, 3351–3357 (2014).

    [41] D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photon. Technol. Lett. 27, 137–140 (2015).

    [42] A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).

    [43] E. M. P. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournie, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21, 6101– 6108 (2013).

    [44] M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. M. P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21, 11659–11669 (2013).

    [45] A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).

    [46] A. De Groote, P. Cardile, A. Z. Subramanian, M. Tassaert, D. Delbeke, R. Baets, and G. Roelkens, “A waveguide coupled LED on SOI by heterogeneous integration of InP-based membranes,” in 12th International Conference on Group IV Photonics (to be published).

    [47] B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisk with embedded colloidal quantum dots,” Appl. Phys. Lett. 101, 161101 (2012).

    [48] S. Gupta and E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21, 29612–29619 (2013).

    [49] W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23, 12152–12160 (2015).

    [50] W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” in 12th International Conference on Group IV Photonics, Canada, 2015.

    [51] X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, Jr., and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).

    [52] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).

    [53] J. M. Dudley, G. Go ry, and C. Stéphane, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

    [54] H. Yokoyama, H. Tsubokawa, H. Guo, J. Shikata, K. Sato, K. Takashima, K. Kashiwagi, N. Saito, H. Taniguchi, and H. Ito, “Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source,” J. Biomed. Opt. 12, 054019 (2007).

    [55] S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahighresolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4, 052501 (2011).

    [56] H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy,” Opt. Express 23, 2872–2878 (2015).

    [57] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

    [58] R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).

    [59] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Express 22, 26517–26525 (2014).

    [60] H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Z. Subramanian, A. Dhakal, P. Helin, S. Simone, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning suprcontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).

    CLP Journals

    [1] Jinfeng Mu, Meindert Dijkstra, Jeroen Korterik, Herman Offerhaus, Sonia M. García-Blanco. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration[J]. Photonics Research, 2020, 8(10): 1634

    [2] Yi Zheng, Xiangping Zhu, Zhe Wang, Zongyu Hou, Fei Gao, Rongzhi Nie, Xiaoxia Cui, Jiangbo She, Bo Peng. Noninvasive blood glucose detection using a miniature wearable Raman spectroscopy system[J]. Chinese Optics Letters, 2017, 15(8): 083001

    [3] Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686

    Ananth Z. Subramanian, Eva Ryckeboer, Ashim Dhakal, Frédéric Peyskens, Aditya Malik, Bart Kuyken, Haolan Zhao, Shibnath Pathak, Alfonso Ruocco, Andreas De Groote, Pieter Wuytens, Daan Martens, Francois Leo, Weiqiang Xie, Utsav Deepak Dave, Muhammad Muneeb, Pol Van Dorpe, Joris Van Campenhout, Wim Bogaerts, Peter Bienstman, Nicolas Le Thomas, Dries Van Thourhout, Zeger Hens, Gunther Roelkens, Roel Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited][J]. Photonics Research, 2015, 3(5): B47
    Download Citation