• Journal of Atmospheric and Environmental Optics
  • Vol. 17, Issue 1, 65 (2022)
[in Chinese]1、*, [in Chinese]1, [in Chinese]1、2, [in Chinese]1, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2、3, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1、2、3, [in Chinese], and [in Chinese]
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2022.01.005 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65 Copy Citation Text show less
    References

    [1] Shao Y P, Klose M, Wyrwoll K H. Recent global dust trend and connections to climate forcing [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(19): 11107-11118.

    [2] Zhang X L, Zhao L J, Tong D, et al. A systematic review of global desert dust and associated human health effects [J]. Atmosphere, 2016, 7(12): 158.

    [3] Zheng S, Pozzer A, Cao C X, et al. Long-term (2001-2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China [J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5715-5725.

    [4] Ramana M V, Ramanathan V, Feng Y, et al. Warming influenced by the ratio of black carbon to sulphate and the black-carbon source [J]. Nature Geoscience, 2010, 3(8): 542-545.

    [5] Shi G Y, Zhao S X. Several scientific issues of studies on the dust storms [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 591-606.

    [6] Wang M X, Zhang R J. Frontier of atmospheric aerosols researches [J]. Climatic and Environmental Research, 2001, 6(1): 119-124.

    [7] Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 779-799.

    [8] Uno I, Eguchi K, Yumimoto K, et al. Asian dust transported one full circuit around the globe [J]. Nature Geoscience, 2009, 2(8): 557-560.

    [9] Zhang X X, Sharratt B, Liu L Y, et al. East Asian dust storm in May 2017: Observations, modelling, and its influence on the Asia-Pacific region [J]. Atmospheric Chemistry and Physics, 2018, 18(11): 8353-8371.

    [10] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D23): 28041-28047.

    [11] Martin R V, Jacob D J, Yantosca R M, et al. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D3): 4097.

    [12] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles? [J]. Reviews of Geophysics, 2000, 38(2): 159-189.

    [13] Sand M, Samset B H, Balkanski Y, et al. Aerosols at the Poles: An AeroCom Phase II multi-model evaluation [J]. Atmospheric Chemistry and Physics Discussions, 2017: 1-35.

    [14] Coopman Q, Garrett T J, Riedi J, et al. Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic [J]. Atmospheric Chemistry and Physics, 2016, 16(7): 4661-4674.

    [15] Liu X, Shi X, Zhang K, et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5 [J]. Atmospheric Chemistry and Physics, 2012, 12(24): 12061-12079.

    [16] Tobo Y, Zhang D, Matsuki A, et al. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions [J]. PNAS, 2010, 107(42): 17905-17910.

    [17] Takemura T. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D2): D02202.

    [18] Yang X, Zhao C F, Zhou L J, et al. Distinct impact of different types of aerosols on surface solar radiation in China [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(11): 6459-6471.

    [19] Dunion J P, Velden C S. The impact of the Saharan air layer on Atlantic tropical cyclone activity [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 353-366.

    [20] Grousset F E, Ginoux P, Bory A, et al. Case study of a Chinese dust plume reaching the French Alps [J]. Geophysical Research Letters, 2003, 30(6): 1277.

    [21] Huang Z W, Huang J P, Hayasaka T, et al. Short-cut transport path for Asian dust directly to the Arctic: A case study [J]. Environmental Research Letters, 2015, 10(11): 114018.

    [22] Takemura T, Uno I, Nakajima T, et al. Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia [J]. Geophysical Research Letters, 2002, 29(24): 11.

    [23] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71.

    [24] Goudie A S. Desert dust and human health disorders [J]. Environment International, 2014, 63: 101-113.

    [25] Griffin D W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health [J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477.

    [26] Longueville F, Ozer P, Doumbia S, et al. Desert dust impacts on human health: An alarming worldwide reality and a need for studies in West Africa [J]. International Journal of Biometeorology, 2013, 57(1): 1-19.

    [27] Kubilay N, Cokacar T, Oguz T. Optical properties of mineral dust outbreaks over the northeastern Mediterranean [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21): 4666.

    [28] Denjean C, Cassola F, Mazzino A, et al. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean [J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(15): 21607-21669.

    [29] Denjean C, Formenti P, Desboeufs K, et al. Size distribution and optical properties of African mineral dust after intercontinental transport [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(12): 7117-7138.

    [30] Zhang X Y, Wang Y Q, Zhang X C, et al. Aerosol monitoring at multiple locations in China: Contributions of EC and dust to aerosol light absorption [J]. Tellus B: Chemical and Physical Meteorology, 2008, 60(4): 647-656.

    [31] Seinfeld J H, Carmichael G R, Arimoto R, et al. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 367-380.

    [32] Koehler K A, Kreidenweis S M, DeMott P J, et al. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11955-11968.

    [33] Koehler K A, Kreidenweis S M, DeMott P J, et al. Hygroscopicity and cloud droplet activation of mineral dust aerosol [J]. Geophysical Research Letters, 2009, 36(8): L08805.

    [34] Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system [J]. Nature, 2002, 419(6903): 215-223.

    [35] Tang M J, Huang X, Lu K D, et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation capacity [J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11727-11777.

    [36] Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832.

    [37] Farmer D K, Cappa C D, Kreidenweis S M. Atmospheric processes and their controlling influence on cloud condensation nuclei activity [J]. Chemical Reviews, 2015, 115(10): 4199-4217.

    [38] Liu Y J, Zhu T, Zhao D F, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry [J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7205-7215.

    [39] Sullivan R C, Moore M J K, Petters M D, et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles [J]. Atmospheric Chemistry and Physics, 2009, 9(10): 3303-3316.

    [40] Wang X, Huang J P, Zhang R D, et al. Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D7): D00K27.

    [41] Lee M C, Choi W. Solid phase photocatalytic reaction on the soot/TiO2 interface: The role of migrating OH radicals [J]. The Journal of Physical Chemistry B, 2002, 106(45): 11818-11822.

    [42] Park J S, Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2 [J]. Langmuir, 2004, 20(26): 11523-11527.

    [43] Ma Q X, Liu Y C, He H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on γ-alumina [J]. The Journal of Physical Chemistry A, 2008, 112(29): 6630-6635.

    [44] Zhang R Y, Wang G H, Guo S, et al. Formation of urban fine particulate matter [J]. Chemical Reviews, 2015, 115(10): 3803-3855.

    [45] Li G, Bei N, Cao J, et al. A possible pathway for rapid growth of sulfate during haze days in China [J]. Atmospheric Chemistry and Physics, 2017, 17(5): 3301-3316.

    [46] Dupart Y, King S M, Nekat B, et al. Mineral dust photochemistry induces nucleation events in the presence of SO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 20842-20847.

    [47] Nie W, Ding A J, Wang T, et al. Polluted dust promotes new particle formation and growth [J]. Scientific Reports, 2014, 4: 6634.

    [48] Pósfai M, Buseck P R. Nature and climate effects of individual tropospheric aerosol particles [J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17-43.

    [49] Li W J, Sun J X, Xu L, et al. A conceptual framework for mixing structures in individual aerosol particles [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(22): 13784-13798.

    [50] Laskin A, Iedema M J, Ichkovich A, et al. Direct observation of completely processed calcium carbonate dust particles [J]. Faraday Discussions, 2005, 130: 453-468.

    [51] Zhang D Z, Iwasaka Y, Shi G Y, et al. Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D6): D06302.

    [52] Li W J, Shao L Y. Observation of nitrate coatings on atmospheric mineral dust particles [J]. Atmospheric Chemistry and Physics, 2009, 9(6): 1863-1871.

    [53] Li W J, Shao L Y, Zhang D Z, et al. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions [J]. Journal of Cleaner Production, 2016, 112: 1330-1349.

    [54] Riemer N, West M. Quantifying aerosol mixing state with entropy and diversity measures [J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11423-11439.

    [55] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2310-2323.

    [56] Shimizu A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D19): D19S17.

    [57] Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne high spectral resolution lidar measurements-methodology and examples [J]. Atmospheric Measurement Techniques, 2012, 5(1): 73-98.

    [58] Wu K Y, Hou W Z, Shi Z, et al. Research progress of aerosol remote sensing retrieval algorithm based on satellite multi-angle observation [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 283-298.

    [59] Yin Z P, Yi F, Wang W, et al. Investigation of entrainment of transported dust into local planetary boundary layer with polarization lidar [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299-306.

    [60] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles [M]. New York: Wiley, 1983.

    [61] Baumgardner D, Newton R, Krmer M, et al. The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals [J]. Atmospheric Research, 2014, 142: 2-14.

    [62] Haarig M, Ansmann A, Gasteiger J, et al. Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE [J]. Atmospheric Chemistry and Physics, 2017, 17(23): 14199-14217.

    [63] Shimizu A, Nishizawa T, Jin Y, et al. Evolution of a lidar network for tropospheric aerosol detection in East Asia [J]. Optical Engineering, 2016, 56(3): 031219.

    [64] Sugimoto N, Matsui I, Shimizu A, et al. Lidar network observations of tropospheric aerosols [C]. Proceedings SPIE 7153, Lidar Remote Sensing for Environmental Monitoring IX, Noumea, New Caledonia. 2008, 7153: 43-55.

    [65] Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements [J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D14): D14204.

    [66] Lacagnina C, Hasekamp O P, Torres O. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2366-2388.

    [67] Herman M. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S02.

    [68] Cesana G, Chepfer H, Winker D, et al. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5788-5808.

    [69] Venkata S, Reagan J. Aerosol retrievals from CALIPSO lidar ocean surface returns [J]. Remote Sensing, 2016, 8(12): 1006.

    [70] Sugimoto N, Matsui I, Shimizu A, et al. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai [J]. Geophysical Research Letters, 2002, 29(19): 1901.

    [71] Uno I, Yumimoto K, Shimizu A, et al. 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model [J]. Geophysical Research Letters, 2008, 35(6): L06803.

    [72] Huang J P, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23212.

    [73] Itahashi S, Yumimoto K, Uno I, et al. Structure of dust and air pollutant outflow over East Asia in the spring [J]. Geophysical Research Letters, 2010, 37(20): L20806.

    [74] Liu Z Y, Vaughan M A, Winker D M, et al. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D15): D15202.

    [75] Liu Z Y, Vaughan M, Winker D, et al. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1198-1213.

    [76] Omar A H. Development of global aerosol models using cluster analysis of aerosol robotic network (AERONET) measurements [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S14.

    [77] Young S A, Vaughan M A. The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: Algorithm description [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(6): 1105-1119.

    [78] Murayama T, Okamoto H, Kaneyasu N, et al. Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31781-31792.

    [79] Murayama T, Müller D, Wada K, et al. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003 [J]. Geophysical Research Letters, 2004, 31(23): L23103.

    [80] Hara Y, Nishizawa T, Sugimoto N, et al. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 20-27.

    [81] Nishizawa T, Sugimoto N, Matsui I, et al. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 79-93.

    [82] Kim Y S. Dust particles in the free atmosphere over desert areas on the Asian continent: Measurements from summer 2001 to summer 2002 with balloon-borne optical particle counter and lidar, Dunhuang, China [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): D19S26.

    [83] Mamouri R E, Ansmann A. Fine and coarse dust separation with polarization lidar [J]. Atmospheric Measurement Techniques, 2014, 7(11): 3717-3735.

    [84] Atkinson D E, Sassen K, Hayashi M, et al. Aerosol properties over Interior Alaska from lidar, DRUM Impactor sampler, and OPC-sonde measurements and their meteorological context during ARCTAS-A, April 2008 [J]. Atmospheric Chemistry and Physics, 2013, 13(3): 1293-1310.

    [85] Nott G J, Duck T J, Doyle J G, et al. A remotely operated lidar for aerosol, temperature, and water vapor profiling in the high arctic [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 221-234.

    [86] Bourassa A E, Degenstein D A, Elash B J, et al. Evolution of the stratospheric aerosol enhancement following the eruptions of Okmok and Kasatochi: Odin-OSIRIS measurements [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): D00L03.

    [87] O’Neill N T, Perro C, Saha A, et al. Properties of Sarychev sulphate aerosols over the Arctic [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): D04203.

    [88] Ancellet G, Pelon J, Blanchard Y, et al. Transport of aerosol to the Arctic: Analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8235-8254.

    [89] Granados-Muoz M J, Navas-Guzmán F, Guerrero-Rascado J L, et al. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during July 2012 ChArMEx/EMEP campaign [J]. Atmospheric Chemistry and Physics, 2015, 15(22): 32831-32887.

    [90] Tesche M, Ansmann A, Müller D, et al. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D13): D13202.

    [91] Di Pierro M, Jaeglé L, Anderson T L. Satellite observations of aerosol transport from East Asia to the Arctic: Three case studies [J]. Atmospheric Chemistry and Physics, 2011, 11(5): 2225-2243.

    [92] de Villiers R A, Ancellet G, Pelon J, et al. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic [J]. Atmospheric Chemistry and Physics, 2010, 10(11): 5011-5030.

    [93] Adachi K, Buseck P R. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere [J]. Atmospheric Environment, 2015, 100: 1-9.

    [94] Wang Z Z, Liu B, Wang B X, et al. Experimental determination of the calibration factor of polarization-Mie lidar [J]. Journal of Atmospheric and Environmental Optics, 2009, 4(6): 414-420.

    [95] Sugimoto N, Lee C H. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths [J]. Applied Optics, 2006, 45(28): 7468-7474.

    [96] Pan X L, Ge B Z, Wang Z, et al. Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes [J]. Atmospheric Chemistry and Physics, 2019, 19(1): 219-232.

    [97] Sugimoto N, Nishizawa T, Shimizu A, et al. Detection of internally mixed Asian dust with air pollution aerosols using a polarization optical particle counter and a polarization-sensitive two-wavelength lidar [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150: 107-113.

    [98] Omar A H, Winker D M, Vaughan M A, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014.

    [99] Li R, Hu Y, Li L, et al. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing [J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5079-5093.

    [100] Xiang Y, Liu J G, Zhang T S, et al. Uncertainty factors of aerosol optical properties inversion by lidar [J]. Laser & Optoelectronics Progress, 2018, 55(9): 092801.

    [101] Bundke U, Nillius B, Jaenicke R, et al. The fast Ice Nucleus chamber FINCH [J]. Atmospheric Research, 2008, 90(2-4): 180-186.

    [102] Schnaiter M, Büttner S, Mhler O, et al. Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals-cloud chamber measurements in the context of contrail and cirrus microphysics [J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10465-10484.

    [103] Lack D A, Langridge J M, Bahreini R, et al. Brown carbon and internal mixing in biomass burning particles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 14802-14807.

    [104] Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318.

    [105] Cappa C D, Zhang X, Russell L M, et al. Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two california, USA, cities in winter and summer [J]. Journal of Geophysical Research: Atmospheres,2019, 124(3): 1550-1577.

    [106] Zhang X L, Kim H, Parworth C L, et al. Optical properties of wintertime aerosols from residential wood burning in Fresno, CA: Results from DISCOVER-AQ 2013 [J]. Environmental Science & Technology, 2016, 50(4): 1681-1690.

    [107] Miyakawa T, Takeda N, Koizumi K, et al. A New laser induced incandescence-mass spectrometric analyzer (LII-MS) for online measurement of aerosol composition classified by black carbon mixing state [J]. Aerosol Science and Technology, 2014, 48(8): 853-863.

    [108] Taketani F, Kanaya Y, Nakamura T, et al. Analysis of the mixing state of airborne particles using a tandem combination of laser-induced fluorescence and incandescence techniques [J]. Journal of Aerosol Science, 2015, 87: 102-110.

    [109] Metcalf A R, Loza C L, Coggon M M, et al. Secondary organic aerosol coating formation and evaporation: Chamber studies using black carbon seed aerosol and the single-particle soot photometer [J]. Aerosol Science and Technology, 2013, 47(3): 326-347.

    [110] Taketani F, Miyakawa T, Takashima H, et al. Shipborne observations of atmospheric black carbon aerosol particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014 [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(4): 1914-1921.

    [111] Xie C, Xu W, Wang J, et al. Light absorption enhancement of black carbon in urban Beijing in summer [J]. Atmospheric Environment, 2019, 213: 499-504.

    [112] Tian Y, Pan X L, Wang Z, et al. Transport patterns, size distributions, and depolarization characteristics of dust particles in east Asia in spring 2018 [J]. Journal of Geophysical Research: Atmospheres, 2020, 125(16): e2019JD031752.

    [113] Pan X L, Uno I, Hara Y, et al. Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, and implications for air quality [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 9863-9873.

    [114] Yumimoto K, Uno I, Pan X, et al. Inverse modeling of asian dust emissions with POPC observations: A TEMM dust sand storm 2014 case study [J]. SOLA, 2017, 13: 31-35.

    [115] Glen A, Brooks S D. A new method for measuring optical scattering properties of atmospherically relevant dusts using the cloud and aerosol spectrometer with polarization (CASPOL) [J]. Atmospheric Chemistry and Physics, 2013, 13(3): 1345-1356.

    [116] Baumgardner D, Jonsson H, Dawson W, et al. The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations [J]. Atmospheric Research, 2001, 59-60: 251-264.

    [117] Glen A, Brooks S D. Single particle measurements of the optical properties of small ice crystals and heterogeneous ice nuclei [J]. Aerosol Science and Technology, 2014, 48(11): 1123-1132.

    [118] Amsler P, Stetzer O, Schnaiter M, et al. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements [J]. Applied Optics, 2009, 48(30): 5811-5822.

    [119] Redding B, Panb Y, Wangbc C, et al. Polarization resolved angular optical scattering of aerosol particles [C]. Conference on Advanced Environmental, Chemical, and Biological Sensing Technologies XI, MAY 05-06, 2014, Baltimore, MD, USA. 2014, 9106: 91060F.

    [120] Kobayashi H, Hayashi M, Shiraishi K, et al. Development of a polarization optical particle counter capable of aerosol type classification [J]. Atmospheric Environment, 2014, 97: 486-492.

    [121] Kaye P, Hirst E, Foot V, et al. A low-cost multichannel aerosol fluorescence sensor for networked deployment [C]. European Symposium on Optics and Photonics for Defence and Security. Proc SPIE 5617, Optically Based Biological and Chemical Sensing for Defence, London, United Kingdom. 2004, 5617: 388-398.

    [122] Kaye P, Stanley W R, Hirst E, et al. Single particle multichannel bio-aerosol fluorescence sensor [J]. Optics Express, 2005, 13(10): 3583-3593.

    [123] Foot V E, Kaye P H, Stanley W R, et al. Low-cost real-time multiparameter bio-aerosol sensors [C]. SPIE Security and Defence. Proc SPIE 7116, Optically Based Biological and Chemical Detection for Defence IV, Cardiff, Wales, United Kingdom. 2008, 7116: 78-89.

    [124] Whitehead J D, Darbyshire E, Brito J, et al. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 9727-9743.

    [125] Gabey A M. Laboratory and Field Characterisation of Fluorescent and Primary Biological Aerosol Particles [D]. Manchester: The University of Manchester, 2011.

    [126] Crawford I, Ruske S, Topping D O, et al. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol [J]. Atmospheric Measurement Techniques, 2015, 8(11): 4979-4991.

    [127] Herman J R, Bhartia P K, Torres O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16911-16922.

    [128] Husar R B, Prospero J M, Stowe L L. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16889-16909.

    [129] Prospero J M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3396-3403.

    [130] Kandler K, SchüTz L, Deutscher C, et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006 [J]. Tellus B: Chemical and Physical Meteorology, 2009, 61(1): 32-50.

    [131] Reid E A, Reid J S, Meier M M, et al. Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D19): 8591.

    [132] Wagner R, Ajtai T, Kandler K, et al. Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2491-2512.

    [133] Chou C, Formenti P, Maille M, et al. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-burning Experiment field campaign in Niger, January 2006 [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D00C10.

    [134] Haywood J M, Pelon J, Formenti P, et al. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0 [J]. Journal of Geophysical Research, 2008, 113: D00C17.

    [135] Okada K, Heintzenberg J, Kai K, et al. Shape of atmospheric mineral particles collected in three Chinese arid-regions [J]. Geophysical Research Letters, 2001, 28(16): 3123-3126.

    [136] Huang X, Yang P, Kattawar G, et al. Effect of mineral dust aerosol aspect ratio on polarized reflectance [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 151: 97-109.

    [137] Rocha-Lima A, Martins J V, Remer L A, et al. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: In situ ground-based and laboratory measurements [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 1023-1043.

    [138] Pan X L, Uno I, Wang Z, et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution [J]. Scientific Reports, 2017, 7: 335.

    [139] Sassen K, Khvorostyanov V I. Cloud effects from boreal forest fire smoke: Evidence for ice nucleation from polarization lidar data and cloud model simulations [J]. Environmental Research Letters, 2008, 3(2): 025006.

    [140] Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: From air pollution to climate change [J]. Physics Today, 1998, 51(10): 88-90.

    [141] Ginoux P. Effects of nonsphericity on mineral dust modeling [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2): 4052.

    [142] Colarco P R. Determining the UV imaginary index of refraction of Saharan dust particles from total ozone mapping spectrometer data using a three-dimensional model of dust transport [J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D16): 4289.

    [143] Binietoglou I, Basart S, Alados-Arboledas L, et al. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals [J]. Atmospheric Measurement Techniques, 2015, 8(9): 3577-3600.

    [144] Seland Y, Iversen T, KirkevG A L F, et al. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings [J]. Tellus A, 2008, 60(3): 459-491.

    [145] Dong X, Fu J S, Huang K, et al. Model development of dust emission and heterogeneous chemistry within the community multiscale air quality modeling system and its application over East Asia [J]. Atmospheric Chemistry and Physics, 2016, 16(13):8157-8180.

    [146] Coz E, Gómez-Moreno F J, Casuccio G S, et al. Variations on morphology and elemental composition of mineral dust particles from local, regional, and long-range transport meteorological scenarios [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D12): D12204.

    [147] Okada K, Kobayashi A, Iwasaka Y, et al. Features of individual Asian dust-storm particles collected at Nagoya, Japan [J]. Journal of the Meteorological Society of Japan Ser II, 1987, 65(3): 515-521.

    [148] Veghte D P, Freedman M A. Facile method for determining the aspect ratios of mineral dust aerosol by electron microscopy [J]. Aerosol Science and Technology, 2014, 48(7): 715-724.

    [149] Jeong G Y, Nousiainen T. TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling [J]. Atmospheric Chemistry and Physics, 2014, 14(14): 7233-7254.

    [150] Iwasaka Y. Importance of dust particles in the free troposphere over the Taklamakan Desert: Electron microscopic experiments of particles collected with a balloonborne particle impactor at Dunhuang, China [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8644.

    [151] Jung H J, Malek M A, Ryu J, et al. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques [J]. Analytical Chemistry, 2010, 82(14): 6193-6202.

    [152] Laskin A. Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP-MS study [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10208.

    [153] Bergin M H, Cass G R, Xu J, et al. Aerosol radiative, physical, and chemical properties in Beijing during June 1999 [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 17969-17980.

    [154] Shi Y, Chen J M, Hu D W, et al. Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility [J]. Science of the Total Environment, 2014, 473/474: 199-206.

    [155] Liang Q, Jaeglé L, Hudman R C, et al. Summertime influence of Asian pollution in the free troposphere over North America [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12): D12S11.

    [156] Pakkanen T A. Study of formation of coarse particle nitrate aerosol [J]. Atmospheric Environment, 1996, 30(14): 2475-2482.

    [157] Galy-Lacaux C, Carmichael G R, Song C H, et al. Heterogeneous processes involving nitrogenous compounds and Saharan dust inferred from measurements and model calculations [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D12): 12559-12578.

    [158] Hanke M, Umann B, Uecker J, et al. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on Monte Cimone [J]. Atmospheric Chemistry and Physics, 2003, 3(2): 417-436.

    [159] Krueger B J, Grassian V H, Cowin J P, et al. Heterogeneous chemistry of individual mineral dust particles from different dust source regions: The importance of particle mineralogy [J]. Atmospheric Environment, 2004, 38(36): 6253-6261.

    [160] Ullerstam M, Johnson M S, Vogt R, et al. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust [J]. Atmospheric Chemistry and Physics, 2003, 3(6): 2043-2051.

    [161] Ooki A, Uematsu M. Chemical interactions between mineral dust particles and acid gases during Asian dust events [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D3): D03201.

    [162] Vlasenko A, Sjogren S, Weingartner E, et al. Effect of humidity on nitric acid uptake to mineral dust aerosol particles [J]. Atmospheric Chemistry and Physics, 2006, 6(8): 2147-2160.

    [163] Usher C R, Michel A E, Grassian V H. Reactions on mineral dust [J]. Chemical Reviews, 2003, 103(12): 4883-4940.

    [164] Fountoukis C, Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols [J]. Atmospheric Chemistry and Physics, 2007, 7(17): 4639-4659.

    [165] Underwood G M, Song C H, Phadnis M, et al. Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A combined laboratory and modeling study [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18055-18066.

    [166] Goodman A L, Bernard E T, Grassian V H. Spectroscopic study of nitric acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in the presence of adsorbed water [J]. The Journal of Physical Chemistry A, 2001, 105(26): 6443-6457.

    [167] Levin Z, Ganor E, Gladstein V. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean [J]. Journal of Applied Meteorology, 1996, 35(9): 1511-1523.

    [168] Zhang X Y, Gong S L, Shen Z X, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D9): 4261.

    [169] Sullivan R C, Guazzotti S A, Sodeman D A, et al. Direct observations of the atmospheric processing of Asian mineral dust [J]. Atmospheric Chemistry and Physics, 2007, 7(5): 1213-1236.

    [170] Fairlie T D, Jacob D J, Dibb J E, et al. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes [J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3999-4012.

    [171] Sobanska S, Coeur C, Maenhaut W, et al. SEM-EDX characterisation of tropospheric aerosols in the Negev desert (Israel) [J]. Journal of Atmospheric Chemistry, 2003, 44(3): 299-322.

    [172] Matsuki A, Iwasaka Y, Shi G, et al. Morphological and chemical modification of mineral dust: Observational insight into the heterogeneous uptake of acidic gases [J]. Geophysical Research Letters, 2005, 32(22): L22806.

    [173] Okada K, Kai K J. Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China [J]. Atmospheric Environment, 2004, 38(40): 6927-6935.

    [174] Andreae M O, Charlson R J, Bruynseels F, et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols [J]. Science, 1986, 232(4758): 1620-1623.

    [175] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011.

    [176] Harris E, Sinha B, van Pinxteren D, et al. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2 [J]. Science, 2013, 340(6133): 727-730.

    [177] Maahs H G. Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds [J]. Journal of Geophysical Research: Oceans, 1983, 88(C15): 10721-10732.

    [178] Ha Z Y, Chan C K. The water activities of MgCl2, Mg(NO3)2, MgSO4, and their mixtures [J]. Aerosol Science and Technology, 1999, 31(2/3): 154-169.

    [179] Murphy D M, Cziczo D J, Froyd K D, et al. Single-particle mass spectrometry of tropospheric aerosol particles [J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D23): D23S32.

    [180] Li X H, Zhao L J, Dong J L, et al. Confocal Raman studies of Mg(NO3)2 aerosol particles deposited on a quartz substrate: supersaturated structures and complicated phase transitions [J]. The Journal of Physical Chemistry B, 2008, 112(16): 5032-5038.

    [181] Kelly J T. Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D11): D11201.

    [182] Noble C A, Prather K A. Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles [J]. Environmental Science & Technology, 1996, 30(9): 2667-2680.

    [183] Han J H, Hung H M, Martin S T. Size effect of hematite and corundum inclusions on the efflorescence relative humidities of aqueous ammonium nitrate particles [J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D10): 4086.

    [184] Kulmala M. How particles nucleate and grow [J]. Science, 2003, 302(5647): 1000-1001.

    [185] Korhonen H, Napari I, Timmreck C, et al. Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17): 4546.

    [186] Falkovich A H, Ganor E, Levin Z, et al. Chemical and mineralogical analysis of individual mineral dust particles [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18029-18036.

    [187] Gao Y, Anderson J R, Hua X. Dust characteristics over the North Pacific observed through shipboard measurements during the ACE-Asia experiment [J]. Atmospheric Environment, 2007, 41(36): 7907-7922.

    [188] Strebel D E, Landis D R, Huemmrich K F, et al. The FIFE data publication experiment [J]. Journal of the Atmospheric Sciences, 1998, 55(7): 1277-1283.

    [189] Trochkine D. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8642.

    [190] Tang X Y. Zhang Y H, Shao M. Chemistry of Atmosphere Environment. [M]. Beijing: Higher Education Press, 1990.

    [191] de Reus M, Dentener F, Thomas A, et al. Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15263-15275.

    [192] Hanisch F, Crowley J N. Ozone decomposition on Saharan dust: An experimental investigation [J]. Atmospheric Chemistry and Physics, 2003, 3(1): 119-130.

    [193] Cwiertny D M, Young M A, Grassian V H. Chemistry and photochemistry of mineral dust aerosol [J]. Annual Review of Physical Chemistry, 2008, 59(1): 27-51.

    [194] Kulmala M, Vehkamki H, Petj T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2): 143-176.

    [195] Kulmala M, Maso M D, Makela J M, et al. On the formation, growth and composition of nucleation mode particles [J]. Tellus B, 2001, 53(4): 479-490.

    [196] Xiao H, Carmichael G R, Yang Z. A modeling evaluation of the impact of mineral aerosols on the particulate sulfate formation in East Asia [J]. Chinese Journal of Atmospheric Science, 1998, 22(3): 343-353.

    [197] Martin L R and Good T W. Catalyzed oxidation of sulfur dioxide in solution: The iron-manganese synergism [J]. Atmospheric Environment. Part A. General Topics, 1991, 25(10): 2395-2399.

    [198] Urone P, Lutsep H, Noyes C M, et al. Static studies of sulfur dioxide reactions in air [J]. Environmental Science & Technology, 1968, 2(8): 611-618.

    [199] He H, Wang Y, Ma Q, et al. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days [J]. Scientific Report, 2014, 4: 4172.

    [200] Nie W, Wang T, Xue L K, et al. Asian dust storm observed at a rural mountain site in Southern China: Chemical evolution and heterogeneous photochemistry [J]. Atmospheric Chemistry and Physics, 2012, 12(24): 11985-11995.

    [201] Ndour M, D’Anna B, George C, et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations [J]. Geophysical Research Letters, 2008, 35(5): L05812.

    [202] Marcì G, Addamo M, Augugliaro V, et al. Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160(1-2): 105-114.

    [203] Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry [J]. Chemical Reviews, 2012, 112(11): 5919-48.

    [204] Monge M E, Rosenorn T, Favez O, et al. Alternative pathway for atmospheric particles growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 6840-6844.

    [205] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489): 476-479.

    [206] Ndour M, Conchon P, D’Anna B, et al. Photochemistry of mineral dust surface as a potential atmospheric renoxification process [J]. Geophysical Research Letters, 2009, 36(5): L05816.

    [207] Styler S A, Donaldson D J. Photooxidation of atmospheric alcohols on laboratory proxies for mineral dust [J]. Environmental Science & Technology, 2011, 45(23): 10004-10012.

    [208] Colarco P R, Nowottnick E P, Randles C A, et al. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index [J]. Journal of Geophysical Research: Atmospheres, 2014,119(2): 753-786.

    [209] Liu L P, Qian Y F. Effect of the shape of aerosol on its radiative characteristics [J]. Journal of Naijing University (Natural Sciences), 1996, 32(2): 316-321.

    [210] DeMott P J, Sassen K, Poellot M R, et al. African dust aerosols as atmospheric ice nuclei [J]. Geophysical Research Letters, 2003, 30(14): 1732.

    [211] van den Heever S C, Carrió G G, et al. Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations [J]. Journal of the Atmospheric Sciences, 2006, 63(7): 1752-1775.

    [212] Wang Y J, Huang J P, Wang T H. The influences of dust aerosols on cloud properties and radiative forcing in a sandstorm weather process [J]. Arid Meteorology, 2006, 24(3): 14-18.

    [213] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J]. Nature, 2001, 409(6821): 695-697.

    [214] Khalizov A F, Zhang R Y, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D5): D05208.

    [215] Luo Y F, Lu D R, He Q, et al. An analysis of direct solar radiation, visibility and aerosol optical depth in South China coastal area [J]. Climatic and Environmental Research, 2000, 5(1): 36-44.

    [216] Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China [J]. Acta Meteorologica Sinica, 2002, 60(5): 625-634.

    [217] Shi G Y, Wang B, Zhang H, et al. The radiative and climatic effects of atmospheric aerosols [J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840.

    [218] Xu X D, Zhou X J, Shi X H. Spatial structure and scale characteristics of air pollution sources in urban communities [J]. Science in China, SerD, 2005, 35(Sup 1): 1-19.

    [219] Shen Z B, Wei L. Radiative effects of atmospheric dust aerosol in northwest China [J]. Scientia Atmospherica Sinica, 2000, 24(4): 541-548.

    [220] Tian L, Zhang W, Shi J S, et al. A preliminary study on scattering property of dust aerosol in Hexi Corridor [J]. Plateau Meteorology, 2010, 29(4): 1050-1057.

    [221] Wang H, Shi G Y, Wang B, et al. The impacts of dust aerosol from deserts of China on the radiative heating rate over desert sources and the north Pacific region [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(3): 515-526.

    [222] Dubovik O, Holben B, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations [J]. Journal of the Atmospheric Sciences, 2002, 59(3): 590-608.

    [223] Ramanathan V, Crutzen P J, Lelieveld J, et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D22): 28371-28398.

    [224] Nakajima T. Significance of direct and indirect radiative forcings of aerosols in the East China Sea region [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8658.

    [225] Sohn B J, Nakajima T, Chun H W, et al. More absorbing dust aerosol inferred from sky radiometer measurements at Anmyeon, Korea [J]. Journal of the Meteorological Society of Japan Ser II, 2007, 85(6): 815-823.

    [226] Kim D H, Sohn B J, Nakajima T, et al. Aerosol radiative forcing over east Asia determined from ground-based solar radiation measurements [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S22.

    [227] Khatri P, Takamura T, Shimizu A, et al. Observation of low single scattering albedo of aerosols in the downwind of the East Asian desert and urban areas during the inflow of dust aerosols [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 787-802.

    [228] Tian P, Zhang L, Ma J, et al. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia [J]. Atmospheric Chemistry and Physics, 2018, 18(11): 7815-7825.

    [229] Obregón M A, Pereira S, Salgueiro V, et al. Aerosol radiative effects during two desert dust events in August 2012 over the Southwestern Iberian Peninsula [J]. Atmospheric Research, 2015, 153: 404-415.

    [230] Derimian Y, Léon J F, Dubovik O, et al. Radiative properties of aerosol mixture observed during the dry season 2006 over M′Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign) [J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D00C09.

    [231] Bauer S E, Mishchenko M I, Lacis A A, et al. Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D6): D06307.

    [232] Murray B J, O’Sullivan D, Atkinson J D, et al. ChemInform abstract: Ice nucleation by particles immersed in supercooled cloud droplets [J]. ChemInform, 2012, 43(48).

    [233] Sullivan R C, Petters M D, DeMott P J, et al. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11471-11487.

    [234] Chen L, Yin Y. A sensitivity study of the effect of dust aerosols on the development of ice-phase cloud processes [J]. Scientia Meteorologica Sinica, 2009, 29(2): 2208-2213.

    [235] Targino A C, Krejci R, Noone K J, et al. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment [J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1977-1990.

    [236] Atkinson J D, Murray B J, Woodhouse M T, et al. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds [J]. Nature, 2013, 498(7454): 355-358.

    [237] Creamean J M, Suski K J, Rosenfeld D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S [J]. Science, 2013, 339(6127): 1572-1578.

    [238] Rosenfeld D, Yu X, Liu G H, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires [J]. Geophysical Research Letters, 2011, 38(21): L21804.

    [239] Kanji Z A, Abbatt J P D. The university of Toronto continuous flow diffusion chamber (UT-CFDC): A simple design for ice nucleation studies [J]. Aerosol Science and Technology, 2009, 43(7): 730-738.

    [240] Archuleta C M, DeMott P J, Kreidenweis S M. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures [J]. Atmospheric Chemistry & Physics, 2005, 5: 2617-2634.

    [241] Field P R, Mhler O, Connolly P, et al. Some ice nucleation characteristics of Asian and Saharan desert dust [J]. Atmospheric Chemistry and Physics, 2006, 6(10): 2991-3006.

    [242] Yuan H, Zhuang G S, Rahn K A, et al. Composition and mixing of individual particles in dust and nondust conditions of North China, spring 2002 [J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D20): D20208.

    [243] Geng H, Hwang H, Liu X, et al. Investigation of aged aerosols in size-resolved Asian dust storm particles transported from Beijing, China, to Incheon, Korea, using low-Z particle EPMA [J]. Atmospheric Chemistry and Physics, 2014, 14(7): 3307-3323.

    [244] Wang Q Z, Zhuang G S, Li J, et al. Mixing of dust with pollution on the transport path of Asian dust—Revealed from the aerosol over Yulin, the north edge of Loess Plateau [J]. Science of the Total Environment, 2011, 409(3): 573-581.

    [245] Hatch C D, Gierlus K M, Schuttlefield J D, et al. Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids [J]. Atmospheric Environment, 2008, 42(22): 5672-5684.

    [246] Gustafsson R J, Orlov A, Badger C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements [J]. Atmospheric Chemistry and Physics, 2005, 5: 3415-3421.

    [247] Ma Q X, Liu Y C, Liu C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8403-8409.

    [248] Tang M, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259.

    [249] Gibson E R, Hudson P K, Grassian V H. Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products [J]. Geophysical Research Letters, 2006, 33(13): L13811.

    [250] Zhang D, Shi G Y, Iwasaka Y, et al. Mixture of sulfate and nitrate in coastal atmospheric aerosols: Individual particle studies in Qingdao (36°04′ N, 120°21′ E), China [J]. Atmospheric Environment, 2000, 34(17): 2669-2679.

    [251] Seisel S, Brensen C, Vogt R, et al. Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K [J]. Atmospheric Chemistry and Physics, 2005, 5(12): 3423-3432.

    [252] Tang M J, Thieser J, Schuster G, et al. Kinetics and mechanism of the heterogeneous reaction of N2O5 with mineral dust particles [J]. Physical Chemistry Chemical Physics, 2012, 14(24): 8551-61.

    [253] Tang I N, Fung K H. Hydration and Raman scattering studies of levitated microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2 [J]. The Journal of Chemical Physics, 1997, 106(5): 1653-1660.

    [254] Levin Z. On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the Mediterranean Israeli dust experiment campaign [J]. Journal of Geophysical Research, 2005, 110(D20): D20202.

    [255] Gibson E R, Gierlus K M, Hudson P K, et al. Generation of internally mixed insoluble and soluble aerosol particles to investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol [J]. Aerosol Science and Technology, 2007, 41(10): 914-924.

    [256] Feingold G, Cotton W R, Kreidenweis S M, et al. The impact of giant cloud condensation Nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties [J]. Journal of the Atmospheric Sciences, 1999, 56(24): 4100-4117.

    [257] Shi Z, Zhang D, Hayashi M, et al. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles [J]. Atmospheric Environment, 2008, 42(4): 822-827.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65
    Download Citation