• Acta Photonica Sinica
  • Vol. 48, Issue 11, 1148012 (2019)
CHEN Gui1、*, HOU Chao-qi2, GUO Hai-tao2, and LI Jin-yan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194811.1148012 Cite this Article
    CHEN Gui, HOU Chao-qi, GUO Hai-tao, LI Jin-yan. Ytterbium-doped Silica Fiber for High Power System: A Review of Research Progress and Development Trend[J]. Acta Photonica Sinica, 2019, 48(11): 1148012 Copy Citation Text show less
    References

    [1] O′CONNOR M, GAPONTSEV V, FOMIN V, et al. Power scaling of SM fiber lasers toward 10 kW[C]. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, Optical Society of America, 2009: CThA3.

    [2] GAPONTSEV V, FOMIN V, FERIN A, et al. Diffraction limited ultra-high-power fiber lasers[C]. Lasers, Sources and Related Photonic Devices, Optical Society of America, 2010: AWA1.

    [3] HECHT J. Fiber lasers ramp up the power[J]. Laser Focus World, 2009, 45(12): 53-57.

    [4] CHEN Xiao-long, LOU Feng-guang, HE Yu,et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39(3): 0336001.

    [5] LIN Hong-huan, TANG Xuan, LI Cheng-yu, et al. The localization single-fiber laser system obtained 10.6 kW laser output[J]. Chinese Journal of Laser, 2018, 45(3): 0315001.

    [6] ACKERMANN M, REHMANN G, LANGE R, et al. Extraction of more than 10 kW from a single ytterbium-doped MM-fiber[C]. SPIE, 2019, 10897: 1089717.

    [7] GAPONTSEV V, AVDOKHIN A, KADWANI P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]. SPIE, 2014, 8964: 896407.

    [8] BEIER F, HUPEL C, KUHN S, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899.

    [9] LIN H, TAO R, LI C, et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 2019, 27(7): 9716-9724.

    [10] ZERVAS M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J].Optics Express, 2019, 27(13): 19019-19041.

    [11] WARD B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers[J]. Optics Express, 2016, 24(4): 3488.

    [12] HEJAZ K, SHAYGANMANESH M, ROOHFOROUZ A, et al. Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification[J]. Applied Optics, 2018, 57(21): 5992-5997.

    [13] KOPONEN J, LAURILA M, SDERLUND M, et al. Benchmarking and measuring photodarkening in Yb doped fibers[J]. Fiber Lasers VI Technology System Apply, 2009,7195: 71950R.

    [14] YANG B L, ZHANG H W, SHI C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20(2): 025802.

    [15] OTTO H J, MODSCHING N, JAUREGUI C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015,23(12): 15265.

    [16] LIU Y, SU R, MA P, et al. >1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213.

    [17] YANG B, ZHANG H, SHI C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 2016, 24(24): 27828-27835.

    [18] ZHANG F, XU H, XING Y, et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Physics Letters, 2019;16(3): 035104.

    [19] TOWNSEND J E, POOLE S B, PAYNE D N. Solution-doping technique for fabrication of rare-earth-doped optical fibres[J]. Electron Letter, 1987; 23(7): 329-331.

    [20] SEKIYA E H, BARUA P, SAITO K, et al. Fabrication of Yb-doped silica glass through the modification of MCVD process[J]. Journal of Non-Crystalline Solids, 2008, 354(42): 4737-4742.

    [21] WEBB A S, BOYLAND A J, STANDISH R J, et al. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers[J]. Journal of Non-Crystalline Solids, 2010, 356(18): 848-851.

    [22] UNGER S, LINDNER F, AICHELE C, et al. A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology[J]. Laser Physics 2014, 24(3): 35103.

    [23] TUMMINELLI R P, MCCOLLUM B C, SNITZER E. Fabrication of high-concentration rare-earth doped optical fibers using chelates[J].Journal Light Technology, 1990, 8(11): 1680-1683.

    [24] DHAR A, PAUL M C, PAL M, et al. Characterization of porous core layer for controlling rare earth incorporation in optical fiber[J]. Optics Express, 2006, 14(20): 9006-9015.

    [25] SAHA M, SEN R. Vapor phase doping process for fabrication of rare earth doped optical fibers: current status and future opportunities[J]. Physica Status Solidi Applied Material Science, 2016, 213(6): 1377-1391.

    [26] SAHA M, PAL A, SEN R. Vapor phase doping of rare-earth in optical fibers for high power laser[J]. IEEE Photonics Technology Letter, 2014, 26(1): 58-61

    [27] KUHN S, HEIN S, HUPEL C, et al. High-power fiber laser materials: influence of fabrication methods and codopants on optical properties[C]. SPIE, 2019, 10914: 1091405

    [28] WANG Y, GAO C, TANG X, et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 2018, 36(16): 3396-3402.

    [29] SHE S, LI W, CHANG C,et al. Ultra-low-loss double-cladding laser fiber fabricated by optimized chelate gas phase deposition technique[J]. Applied Optics, 2018, 57(27): 7943.

    [30] ZHANG L, LI G, LI W,et al. KW-level low photodarkening Yb/Ce codoped aluminosilicate fiber fabricated by the chelate gas phase deposition technique[J]. Optical Materials Express, 2016, 6(11): 3558.

    [31] ZHENG J, ZHAO W, ZHAO B,et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 2017, 7(4): 1259.

    [32] JAIN D, JUNG Y, BARUA P,et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415.

    [33] PONSODA J J M I, NORIN L, YE C, et al. Ytterbium-doped fibers fabricated with atomic layer deposition method[J]. Optics Express, 2012, 20(22): 25085-25095.

    [34] JOONA J K, LAETICIA P, TEEMU K,et al. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers[J]. Optical Engineering, 2011, 50(11): 111605.

    [35] LEICH M, JUST F, LANGNER A, et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Optics Letters, 2011, 36(9): 1557-1559.

    [36] ALI E S, SOENKE P, JONAS S, et al. Properties of Yb doped silica fibers with different Al and P co-dopants concentrations produced by the Sol-Gel based granulated silica method[C]. SPIE, 2018, 10681: 1068105.

    [37] CHU Y B, YU Y, LIAO L, et al. 3D nanoporous silica rods for extra-large-core high-power fiber lasers[J]. ACS Photonics, 2018, 5(10): 4014-4021.

    [38] LIU Jian-tao, ZHOU Gui-yao, XIA Chang-ming. Fabrication of Yb3+/Al3+ co-doped large-mode-area photonic crystal fiber based on power sintering technology[J]. Acta Photonica Sinica, 2013, 42(5): 552-554.

    [39] SHIKAI W, WENBIN X, FENGGUANG L,et al. Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method[J]. Optical Materials Express, 2016, 6(1): 69-78.

    [40] CHU Y B, MA Y X, YU Y,et al. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology[J]. Optics Letter, 2016, 41(6): 1225-1228.

    [41] UNGER S, SCHWUCHOW A, DELLITH J,et al. Codoped materials for high power fiber lasers: diffusion behaviour and optical properties[C]. SPIE, 2007, 6469: 646913.

    [42] ENGHOLM M, NORIN L. The role of charge transfer processes for the induced optical losses in ytterbium doped fiber lasers[C]. SPIE, 2009, 7195: 71950T.

    [43] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [44] MELKUMOV M A, BUFETOV I A, KRAVTSOV K S, et al. Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3[J]. Quantum Electron, 2004, 34(9): 843-848.

    [45] PASCHOTTA R, NILSSON J, BARBER P R, et al. Lifetime quenching in Yb doped fibres[J]. Optics Communications, 1997, 136: 375-378.

    [46] KILABAYASHI T, IKEDA M, NAKAI M, et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD), Optical Society of America, 2006: OThC5.

    [47] SHUBIN A V, YASHKOV M V, MELKUMOV M A, et al. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers[C]. CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, 2007: CJ3_1.

    [48] UNGER S, SCHWUCHOW A, JETSCHKE S, et al. Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers[C]. SPIE, 2009, 7212: 72121B.

    [49] ENGHOLM M, JELGER P, LAURELL F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 2009, 34(8): 1285-1287.

    [50] CAO R, WANG Y, CHEN G, et al. Investigation of photo-darkening-induced thermal load in Yb-doped fiber lasers[J]. IEEE Photonics Technology Letter, 2019, 31(11): 809-812.

    [51] SAKAGUCHI Y, FUJIMOTO Y, MASUDA M, et al. Suppression of photo-darkening effect in Yb-doped silica glass fiber by co-doping of group 2 element[J]. Journal of Non-Crystalline Solids, 2016, 440: 85-89.

    [52] ZHAO N, LIU Y, LI M, et al. Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping[J]. Optics Express, 2017, 25(15): 18191-18196.

    [53] JAUREGUI C, LIMPERT J, TNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

    [54] BALLATO J, DRAGIC P. Materials development for next generation optical fiber[J]. Materials, 2014, 7: 4411-4430.

    [55] KOUICHI Y S, MANABU T S, YOSHIHARU K S. Coat removing method of coated optical fiber: US10107963B2[P]. 2018-10-23.

    [56] DANIEL J M O, SIMAKOV N, HEMMING A,et al. Metal clad active fibres for power scaling and thermal management at kW power levels[J]. Optics Express, 2016, 24(16): 18592-18606.

    [57] MASHIKO Y, NGUYEN H K, KASHIWAGI M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[C]. SPIE, 2016, 9728: 972805.

    [58] SHIMA K, IKOMA S, UCHIYAMA K, et al. 5-kW single stage all-fiber Yb doped single-mode fiber laser for materials processing[C]. SPIE, 2018, 10512: 105120C.

    [59] MARCIANTE J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.

    [60] EIDAM T, WIRTH C, JAUREGUI C,et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

    [61] HANSEN K R, ALKESKJOLD T T, BROENG J,et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letter, 2012, 37(12): 2382-2384.

    [62] NADERI S, DAJANI I, MADDEN T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.

    [63] MARCIANTE J R, ROIDES R G, SHKUNOV V V,et al. Near-diffraction-limited operation of step index large-mode-area fiber lasers via gain filtering[J]. Optics Letter, 2010, 35(11): 1828-1830.

    [64] YE C, KOPONEN J, KOKKI T,et al. Near-diffraction-limited output from confined-doped ytterbium fibre with 41 μm core diameter[J]. Electronics Letters, 2011, 47(14): 819-821.

    [65] OBIN C, DAJANI I, PULFORD B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letter, 2014, 39(3): 666-669.

    [66] LIAO L, ZHANG F, HE X,et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics, 2018, 57(12): 3244-3249.

    [67] ZHANG F, WANG Y, LIN X,et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 2019, 27(15): 20824-20836.

    [68] ZHANG F, XU H, XING Y,et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Physics Letter, 2019, 16(3): 035104.

    CHEN Gui, HOU Chao-qi, GUO Hai-tao, LI Jin-yan. Ytterbium-doped Silica Fiber for High Power System: A Review of Research Progress and Development Trend[J]. Acta Photonica Sinica, 2019, 48(11): 1148012
    Download Citation