• Photonics Research
  • Vol. 13, Issue 7, 1810 (2025)
Najia Sharmin1, Huajun Tang1, Chandra Jinata1,2, Ningbo Chen1..., Bingfeng Li3, Nikki Pui Yue Lee3, Yitian Tong1,4,* and Kenneth K. Y. Wong1,2,5,*|Show fewer author(s)
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
  • 2Advanced Biomedical Instrumentation Center, Hong Kong SAR, China
  • 3Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
  • 4e-mail: tongyt89@hku.hk
  • 5e-mail: kywong@eee.hku.hk
  • show less
    DOI: 10.1364/PRJ.553103 Cite this Article Set citation alerts
    Najia Sharmin, Huajun Tang, Chandra Jinata, Ningbo Chen, Bingfeng Li, Nikki Pui Yue Lee, Yitian Tong, Kenneth K. Y. Wong, "1725-nm HOPE for segmentation-enabled quantitative photoacoustic microscopy of intrahepatic lipids," Photonics Res. 13, 1810 (2025) Copy Citation Text show less
    References

    [1] H.-W. Wang, N. Chai, P. Wang. Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett., 106, 238106(2011).

    [2] H. F. Zhang, K. Maslov, M. Sivaramakrishnan. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett., 90, 053901(2007).

    [3] X. Shu, H. Li, B. Dong. Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. Biomed. Opt. Express, 8, 2851-2865(2017).

    [4] H. Tang, Y. Tong, M. Li. Hybrid optical parametrically oscillating emitter-enabled photoacoustic imaging of water: enhanced contrast, dynamic range, and multifaceted applications. Adv. Photonics Nexus, 3, 046013(2024).

    [5] B. Wang, J. L. Su, J. Amirian. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt. Express, 18, 4889-4897(2010).

    [6] P. Libby. The changing landscape of atherosclerosis. Nature, 592, 524-533(2021).

    [7] P. Libby, P. Theroux. Pathophysiology of coronary artery disease. Circulation, 111, 3481-3488(2005).

    [8] U. Campia, M. Gerhard-Herman, G. Piazza. Peripheral artery disease: past, present, and future. Am. J. Med., 132, 1133-1141(2019).

    [9] S. Love. Demyelinating diseases. J. Clin. Pathol., 59, 1151-1159(2006).

    [10] E. Scorletti, R. M. Carr. A new perspective on NAFLD: focusing on lipid droplets. J. Hepatol., 76, 934-945(2022).

    [11] J. Starekova, S. B. Reeder. Liver fat quantification: where do we stand?. Abdom. Radiol., 45, 3386-3399(2020).

    [12] S. L. Friedman, B. A. Neuschwander-Tetri, M. Rinella. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 24, 908-922(2018).

    [13] Y. N. Zhang, K. J. Fowler, G. Hamilton. Liver fat imaging—a clinical overview of ultrasound, CT, and MR imaging. Br. J. Radiol., 91, 20170959(2018).

    [14] M. S. Mundi, S. Velapati, J. Patel. Evolution of NAFLD and its management. Nutr. Clin. Pract., 35, 72-84(2020).

    [15] N. Tamaki, V. Ajmera, R. Loomba. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat. Rev. Endocrinol., 18, 55-66(2022).

    [16] K. Jansen, M. Wu, A. F. W. van der Steen. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics, 2, 12-20(2014).

    [17] B. Wang, A. Karpiouk, D. Yeager. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt. Lett., 37, 1244-1246(2012).

    [18] T. J. Allen, A. Hall, A. P. Dhillon. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J. Biomed. Opt., 17, 061209(2012).

    [19] B. Wang, A. Karpiouk, D. Yeager. In vivo Intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med. Biol., 38, 2098-2103(2012).

    [20] K. Jansen, A. F. Van Der Steen, M. Wu. Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. J. Biomed. Opt., 19, 026006(2014).

    [21] J. Hui, R. Li, E. H. Phillips. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics, 4, 11-21(2016).

    [22] P. Wang, J. R. Rajian, J.-X. Cheng. Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration. J. Phys. Chem. Lett., 4, 2177-2185(2013).

    [23] H. Lee, M. R. Seeger, N. Lippok. Nanosecond SRS fiber amplifier for label-free near-infrared photoacoustic microscopy of lipids. Photoacoustics, 25, 100331(2022).

    [24] R. Nachabé, J. W. A. Van Der Hoorn, R. Van De Molengraaf. Validation of interventional fiber optic spectroscopy with MR spectroscopy, MAS-NMR spectroscopy, high-performance thin-layer chromatography, and histopathology for accurate hepatic fat quantification:. Invest. Radiol., 47, 209-216(2012).

    [25] J. Hui, Y. Cao, Y. Zhang. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Sci. Rep., 7, 1417(2017).

    [26] P. Wang, H.-W. Wang, M. Sturek. Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm. J. Biophotonics, 5, 25-32(2012).

    [27] H. Ni, Y. Yuan, M. Li. Millimetre-deep micrometre-resolution vibrational imaging by shortwave infrared photothermal microscopy. Nat. Photonics, 18, 944-951(2024).

    [28] J. A. Noble, D. Boukerroui. Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging, 25, 987-1010(2006).

    [29] Z. Liang, S. Zhang, J. Wu. Automatic 3-D segmentation and volumetric light fluence correction for photoacoustic tomography based on optimal 3-D graph search. Med. Image Anal., 75, 102275(2022).

    [30] C. Yang, H. Lan, F. Gao. Review of deep learning for photoacoustic imaging. Photoacoustics, 21, 100215(2021).

    [31] T. D. Le, S.-Y. Kwon, C. Lee. Segmentation and quantitative analysis of photoacoustic imaging: a review. Photonics, 9, 176(2022).

    [32] M. Wu, K. Jansen, A. F. W. Van Der Steen. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomed. Opt. Express, 6, 3276-3286(2015).

    [33] Z. Piao, T. Ma, J. Li. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm. Appl. Phys. Lett., 107, 083701(2015).

    [34] Y. Cao, A. Kole, J. Hui. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Sci. Rep., 8, 2400(2018).

    [35] J. Hui, Q. Yu, T. Ma. High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO. Biomed. Opt. Express, 6, 4557-4566(2015).

    [36] Y. Cao, A. Kole, L. Lan. Spectral analysis assisted photoacoustic imaging for lipid composition differentiation. Photoacoustics, 7, 12-19(2017).

    [37] P. Wang, P. Wang, H.-W. Wang. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration. J. Biomed. Opt., 17, 0960101(2012).

    [38] Y. Cao, J. Hui, A. Kole. High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design. Sci. Rep., 6, 25236(2016).

    [39] A. Kole, Y. Cao, J. Hui. Comparative quantification of arterial lipid by intravascular photoacoustic-ultrasound imaging and near-infrared spectroscopy-intravascular ultrasound. J. Cardiovasc. Transl. Res., 12, 211-220(2019).

    [40] M. K. Dasa, G. Nteroli, P. Bowen. All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. Photoacoustics, 18, 100163(2020).

    [41] T. Buma, N. C. Conley, S. W. Choi. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser. Biomed. Opt. Express, 9, 276-288(2018).

    [42] M. K. Dasa, C. Markos, M. Maria. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850 nm region. Biomed. Opt. Express, 9, 1762-1770(2018).

    [43] J. Shi, M. Li, H. Tang. Hybrid optical parametrically-oscillating emitter at 1930 nm for volumetric photoacoustic imaging of water content. eLight, 2, 6(2022).

    [44] L. Zhang, J. Zhang, Q. Sheng. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser. Opt. Express, 28, 37910-37918(2020).

    [45] J. M. O. Daniel, N. Simakov, M. Tokurakawa. Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band. Opt. Express, 23, 18269-18276(2015).

    [46] P. Peterka, B. Faure, W. Blanc. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron., 36, 201-212(2004).

    [47] S. D. Jackson, T. A. King. Theoretical modeling of Tm-doped silica fiber lasers. J. Lightwave Technol., 17, 948-956(1999).

    [48] T. Y. Fan, M. Inguscio, R. Wallenstein. Quasi-three-level lasers. Solid State Lasers: New Developments and Applications, 189-203(1993).

    [49] M. Grishin. Advances in Solid State Lasers Development and Applications(2010).

    [50] T. Fan, R. Byer. Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser. IEEE J. Quantum Electron., 23, 605-612(1987).

    [51] Z. Li, A. M. Heidt, N. Simakov. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express, 21, 26450-26455(2013).

    [52] L. Zhang, J. Zhang, Q. Sheng. High-efficiency thulium-doped fiber laser at 1.7 μm. Opt. Laser Technol., 152, 108180(2022).

    [53] Z. Li, Y. Jung, J. M. O. Daniel. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. Opt. Lett., 41, 2197-2200(2016).

    [54] . American National Standard for safe use of lasers(2024).

    [55] E. M. Petäjä, H. Yki-Järvinen. Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD: a systematic review. Int. J. Mol. Sci., 17, 633(2016).

    [56] S. Pouwels, N. Sakran, Y. Graham. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord., 22, 63(2022).

    [57] N. Chalasani, Z. Younossi, J. E. Lavine. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology, 142, 1592-1609(2012).

    [58] A. R. Hall, A. P. Dhillon, A. C. Green. Hepatic steatosis estimated microscopically versus digital image analysis. Liver Int., 33, 926-935(2013).

    [59] M. Catta-Preta, L. S. Mendonca, J. Fraulob-Aquino. A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Arch., 459, 477-485(2011).

    [60] A. P. Levene, H. Kudo, M. J. Armstrong. Quantifying hepatic steatosis–more than meets the eye. Histopathology, 60, 971-981(2012).

    [61] D. Yang, X. Wang, L. Zhang. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci., 12, 106(2022).

    [62] R. S. Yadav, N. K. Tiwari. Lipid integration in neurodegeneration: an overview of alzheimer’s disease. Mol. Neurobiol., 50, 168-176(2014).

    [63] T. T. Reed. Lipid peroxidation and neurodegenerative disease. Free Radic. Biol. Med., 51, 1302-1319(2011).

    [64] A. Haessler, M. Candlish, J. K. Hefendehl. Mapping cellular stress and lipid dysregulation in Alzheimer-related progressive neurodegeneration using label-free Raman microscopy. Commun. Biol., 7, 1514(2024).

    [65] E. Peli. Contrast in complex images. J. Opt. Soc. Am. A, 7, 2032-2040(1990).

    [66] E. M. Brunt, D. G. Tiniakos. Histopathology of nonalcoholic fatty liver disease. World J. Gastroenterol., 16, 5286-5296(2010).

    [67] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern., 9, 62-66(1979).

    [68] B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging, 13, 146(2004).

    Najia Sharmin, Huajun Tang, Chandra Jinata, Ningbo Chen, Bingfeng Li, Nikki Pui Yue Lee, Yitian Tong, Kenneth K. Y. Wong, "1725-nm HOPE for segmentation-enabled quantitative photoacoustic microscopy of intrahepatic lipids," Photonics Res. 13, 1810 (2025)
    Download Citation