[1] YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chem Rev, 2011, 111(5): 3577-3613.
[2] LIU Y Y, LU X, LAI F L, et al. Rechargeable aqueous Zn-based energy storage devices[J]. Joule, 2021, 5(11): 2845-2903.
[3] RUAN P C, LIANG S Q, LU B G, et al. Design strategies for high-energy-density aqueous zinc batteries[J]. Angew Chem Int Ed Engl, 2022, 61(17): e202200598.
[4] JIA X X, LIU C F, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chem Rev, 2020, 120(15): 7795-7866.
[5] TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy Environ Sci, 2019, 12(11): 3288-3304.
[6] KUNDU D P, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nat Energy, 2016, 1(10): 1-8.
[7] CHEN S, LI K, HUI K S, et al. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery[J]. Adv Funct Mater, 2020, 30(43): 2003890.
[8] LI Z L, GANAPATHY S, XU Y L, et al. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte[J]. Adv Energy Mater, 2019, 9(22): 900237.
[9] DING J W, DU Z G, GU L Q, et al. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide[J]. Adv Mater, 2018, 30(26): e1800762.
[10] MING F W, LIANG H F, LEI Y J, et al. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries[J]. ACS Energy Lett, 2018, 3(10): 2602-2609.
[11] LI G L, YANG Z, JIANG Y, et al. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3[J]. Nano Energy, 2016, 25: 211-217.
[12] WAN F, ZHANG L L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nat Commun, 2018, 9(1): 1-11.
[13] ZHOU D H, LIU S Q, WANG H Y, et al. Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance[J]. J Power Sources, 2013, 227: 111-117.
[14] WANG Z Q, ZHOU M, QIN L P, et al. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries[J]. eScience, 2022, 2(2): 209-218.
[15] XU J, YU B S, ZHAO H, et al. Oxygen-doped VS4 microspheres with abundant sulfur vacancies as a superior electrocatalyst for the hydrogen evolution reaction[J]. ACS Sustain Chem Eng, 2020, 8(39): 15055-15064.
[16] WEI T Y, LI Q, YANG G Z, et al. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing[J]. Electrochim Acta, 2018, 287: 60-67.
[17] LIU W B, DONG L B, JIANG B Z, et al. Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries[J]. Electrochim Acta, 2019, 320: 134565.
[18] LIAO M, WANG J W, YE L, et al. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode[J]. Angew Chem Int Ed, 2020, 59(6): 2273-2278.
[19] LUO H, WANG B, WANG C L, et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance[J]. Energy Storage Mater, 2020, 33: 390-398.
[20] WANG W K, YANG C, CHI X W, et al. Ultralow-water-activity electrolyte endows vanadium-based zinc-ion batteries with durable lifespan exceeding 30 000 cycles[J]. Energy Storage Mater, 2022, 53: 774-782.
[21] LENG K T, LI G J, GUO J J, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries[J]. Adv Funct Mater, 2020, 30(23): 2001317.
[22] HOU Z G, ZHANG X Q, LI X N, et al. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery[J]. J Mater Chem A, 2017, 5(2): 730-738.
[23] XU Y H, ZHANG G N, LIU J Q, et al. Recent advances on challenges and strategies of Manganese dioxide cathodes for aqueous zinc-ion batteries[J]. Energy Environ Mater, 2022, 12: 12575.
[24] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angew Chem Int Ed Engl, 2012, 51(4): 933-935.
[25] WANG D H, WANG L F, LIANG G J, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery[J]. ACS Nano, 2019, 13(9): 10643-10652.
[26] LIU L Y, WU Y C, HUANG L, et al. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage[J]. Adv Energy Mater, 2021, 11(31): 2101287.
[27] ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-Manganese dioxide batteries with high energy and power densities[J]. Nat Commun, 2017, 8(1): 1-9.
[28] JIANG B Z, XU C J, WU C L, et al. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life[J]. Electrochim Acta, 2017, 229: 422-428.
[29] HAO J W, MOU J, ZHANG J W, et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery[J]. Electrochim Acta, 2018, 259: 170-178.
[30] WANG J J, WANG J G, LIU H Y, et al. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries[J]. J Power Sources, 2019, 438: 226951.
[31] ZHANG Y X, CUI X S, LIU Y P, et al. Aqueous Zn-MnO2 battery: Approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms[J]. J Energy Chem, 2022, 67: 225-232.
[32] LIU G X, HUANG H W, BI R, et al. K+ pre-intercalated Manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries[J]. J Mater Chem A, 2019, 7(36): 20806-20812.
[33] NAM K W, KIM H, CHOI J H, et al. Crystal water for high performance layered Manganese oxide cathodes in aqueous rechargeable zinc batteries[J]. Energy Environ Sci, 2019, 12(6): 1999-2009.
[34] ZHANG H Z, LIU Q Y, WANG J, et al. Boosting the Zn-ion storage capability of birnessite Manganese oxide nanoflorets by La3+ intercalation[J]. J Mater Chem A, 2019, 7(38): 22079-22083.
[35] WANG J W, SUN X L, ZHAO H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping[J]. J Phys Chem C, 2019, 123(37): 22735-22741.
[36] CHUAI M Y, YANG J L, WANG M M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185.
[37] XIONG T, YU ZHI gen, WU H J, et al. Defect engineering of oxygen-deficient Manganese oxide to achieve high-performing aqueous zinc ion battery[J]. Adv Energy Mater, 2019, 9(14): 1803815.
[38] ZHANG Y, DENG S J, LUO M, et al. Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries[J]. Small, 2020, 16(42): 1905452.
[39] GUO X L, SUN H, LI C G, et al. Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance[J]. J Energy Chem, 2022, 68: 538-547.
[40] ZHU C Y, FANG G Z, LIANG S Q, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery[J]. Energy Storage Mater, 2020, 24: 394-401.
[41] LIAN S T, SUN C L, XU W N, et al. Built-in oriented electric field facilitating durable ZnMnO2 battery[J]. Nano Energy, 2019, 62: 79-84.
[42] ISLAM S, ALFARUQI M H, SONG J J, et al. Carbon-coated Manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. J Energy Chem, 2017, 26(4): 815-819.
[43] WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small, 2018, 14(13): 1703850.
[44] XU X L, CHEN Y, LI W R, et al. Achieving ultralong-cycle zinc-ion battery via synergistically electronic and structural regulation of a MnO2 nanocrystal-carbon hybrid framework[J]. Small, 2023, 19(10): 2207517.
[45] LI Y X, ZHAO J X, HU Q, et al. Prussian blue analogs cathodes for aqueous zinc ion batteries[J]. Mater Today Energy, 2022, 29: 101095.
[46] ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Adv Energy Mater, 2015, 5(2): 1400930.
[47] TRóCOLI R, LA MANTIA F. An aqueous zinc-ion battery based on copper hexacyanoferrate[J]. ChemSusChem, 2015, 8(3): 481-485.
[48] YANG Q, MO F N, LIU Z X, et al. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10 000-cycle lifespan and superior rate capability[J]. Adv Mater, 2019, 31(32): 1901521.
[49] LI Z X, LIU T T, MENG R J, et al. Insights into the structure stability of Prussian blue for aqueous zinc ion batteries[J]. Energy Environ Mater, 2021, 4(1): 111-116.
[50] MA L T, CHEN S M, LONG C B, et al. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction[J]. Adv Energy Mater, 2019, 9(45): 1902446.
[51] HOU Z G, ZHANG X Q, LI X N, et al. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery[J]. J Mater Chem A, 2017, 5(2): 730-738.
[52] TIAN Y P, JU M M, BIN X Q, et al. Long cycle life aqueous rechargeable battery Zn/Vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity[J]. Chem Eng J, 2022, 430: 132864.
[53] ZHAO J X, LU H Y, PENG J H, et al. Establishing aqueous zinc-ion batteries for sustainable energy storage[J]. Energy Storage Mater, 2023, 60: 102846.
[54] ZENG Y X, LU X F, ZHANG S L, et al. Construction of Co-Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries[J]. Angew Chem Int Ed Engl, 2021, 60(41): 22189-22194.
[55] ZHAN J L, ZHU W, LIU Y S, et al. Low-cost, safe, and ultra-long cycle life Zn-K hybrid ion batteries[J]. Adv Funct Mater, 2023, 33(38): 2301935.
[56] DENG W J, LI Z G, YE Y K, et al. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage[J]. Adv Energy Mater, 2021, 11(31): 2003639.
[57] BIN D, DU Y Y, YANG B B, et al. Progress of phosphate-based polyanion cathodes for aqueous rechargeable zinc batteries[J]. Adv Funct Mater, 2023, 33(8): 2211765.
[58] LI G L, YANG Z, JIANG Y, et al. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage[J]. J Power Sources, 2016, 308: 52-57.
[59] HU P, ZHU T, WANG X P, et al. Aqueous Zn//Zn(CF3SO3)2// Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/ de-intercalation[J]. Nano Energy, 2019, 58: 492-498.
[60] ZHAO H B, HU C J, CHENG H W, et al. Novel rechargeable M3V2(PO4)3//zinc (M?=?Li, Na) hybrid aqueous batteries with excellent cycling performance[J]. Sci Rep, 2016, 6(1): 1-10.
[61] WANG F, HU E Y, SUN W, et al. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life[J]. Energy Environ Sci, 2018, 11(11): 3168-3175.
[62] PARK M J, YAGHOOBNEJAD ASL H, THERESE S, et al. Structural impact of Zn-insertion into monoclinic V2(PO4)3: Implications for Zn-ion batteries[J]. J Mater Chem A, 2019, 7(12): 7159-7167.
[63] HE P, LIU J L, CUI W J, et al. Investigation on capacity fading of LiFePO4 in aqueous electrolyte[J]. Electrochim Acta, 2011, 56(5): 2351-2357.
[64] YESIBOLATI N, UMIROV N, KOISHYBAY A, et al. High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications[J]. Electrochim Acta, 2015, 152: 505-511.
[65] WANG F, SUN W, SHADIKE Z, et al. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface[J]. Angew Chem Int Ed, 2018, 57(37): 11978-11981.
[66] WAN F, ZHANG Y, ZHANG L L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries[J]. Angew Chem Int Ed Engl, 2019, 58(21): 7062-7067.
[67] WANG F, BLANC L E, LI Q, et al. Quantifying and suppressing proton intercalation to enable high-voltage Zn-ion batteries[J]. Adv Energy Mater, 2021, 11(41): 2102016.
[68] DONG Y, DI S L, ZHANG F B, et al. Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries[J]. J Mater Chem A, 2020, 8(6): 3252-3261.
[69] LI Q, MA K X, HONG C, et al. Realizing excellent cycle stability of Zn/Na3V2(PO4)3 batteries by suppressing dissolution and structural degradation in non-aqueous Na/Zn dual-salt electrolytes[J]. Sci China Mater, 2021, 64(6): 1386-1395.
[70] ZHAO J W, LI Y Q, PENG X, et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte[J]. Electrochem Commun, 2016, 69: 6-10.
[71] LI C, KINGSBURY R, ZHOU L D, et al. Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating[J]. ACS Energy Lett, 2022, 7(1): 533-540.
[72] NI Q, JIANG H, SANDSTROM S, et al. A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte[J]. Adv Funct Mater, 2020, 30(36): 2003511.
[73] SHI H Y, WU W L, YANG X P, et al. Accessing the 2V VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries[J]. J Power Sources, 2021, 507: 230270.
[74] ZHANG J, ZHAO J W, DU H P, et al. Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries[J]. Electrochim Acta, 2018, 280: 108-113.
[75] YAGHOOBNEJAD ASL H, SHARMA S, MANTHIRAM A. The critical effect of water content in the electrolyte on the reversible electrochemical performance of Zn-VPO4F cells[J]. J Mater Chem A, 2020, 8(17): 8262-8267.
[76] JIA Z Q, YANG X P, SHI H Y, et al. Stabilization of VOPO4·2H2O voltage and capacity retention in aqueous zinc batteries with a hydrogen bond regulator[J]. Chem Commun, 2022, 58(39): 5905-5908.
[77] SHI H Y, SONG Y, QIN Z M, et al. Inhibiting VOPO4?xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities[J]. Angew Chem Int Ed, 2019, 58(45): 16057-16061.
[78] HAO J N, LONG J, LI B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Adv Funct Mater, 2019, 29(34): 1903605.
[79] Hu Z, Zhang F, Zhao Y, et al. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries[J]. Adv Mater, 2022, 34(37): e2203104.
[80] CAO L S, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nat Nanotechnol, 2021, 16(8): 902-910.
[81] LI W, WANG K L, CHENG S J, et al. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode[J]. Energy Storage Mater, 2018, 15: 14-21.
[82] LI W, WANG K L, ZHOU M, et al. Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(26): 22059-22066.
[83] WU Z Y, YE F, LIU Q, et al. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage[J]. Adv Energy Mater, 2022, 12(23): 2200654.
[84] WU Z Y, LU C J, YE F, et al. Bilayered VOPO4?2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries[J]. Adv Funct Mater, 2021, 31(45): 2106816.
[85] XIONG P, ZHANG F, ZHANG X Y, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium- based rechargeable batteries[J]. Nat Commun, 2020, 11(1): 1-12.
[86] OU L N, LIU Z X, ZHOU Y F, et al. Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate[J]. Chem Eng J, 2021, 426: 131868.
[87] ZHOU L F, GAO X W, DU T, et al. New phosphate Zn2Fe(PO4)2 cathode material for nonaqueous zinc ion batteries with long life span[J]. ACS Appl Mater Interfaces, 2022, 14(7): 8888-8895.
[88] MA X D, WANG D H, XU R M, et al. Iron-based NASICON-type Na4Fe3(PO4)2(P2O7) cathode for zinc-ion battery: Zn2+/Na+ Co-intercalation enabling high capacity[J]. ChemSusChem, 2021, 14(24): 5424-5433.
[89] LIANG Y L, TAO Z L, CHEN J. Organic electrode materials for rechargeable lithium batteries[J]. Adv Energy Mater, 2012, 2(7): 742-769.
[90] H?UPLER B, WILD A, SCHUBERT U S. Carbonyls: Powerful organic materials for secondary batteries[J]. Adv Energy Mater, 2015, 5(11): 1402034.
[91] LI Z H, TAN J, WANG Y, et al. Building better aqueous Zn-organic batteries[J]. Energy Environ Sci, 2023, 16(6): 2398-2431.
[92] MITTAL U, COLASUONNO F, RAWAL A, et al. A highly stable 1.3 V organic cathode for aqueous zinc batteries designed in situ by solid-state electrooxidation[J]. Energy Storage Mater, 2022, 46: 129-137.
[93] MIAO L, SONG Z Y, DU W Y, et al. Advances in organic cathode materials for aqueous multivalent metal-ion storage[J]. Mater Chem Front, 2023, 7(14): 2731-2749.
[94] GUO Z W, MA Y Y, DONG X L, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angew Chem Int Ed, 2018, 57(36): 11737-11741.
[95] ZHAO Q, HUANG W W, LUO Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Sci Adv, 2018, 4(3): eaao1761.
[96] ZHANG Y, ZHAO L H, LIANG Y L, et al. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries[J]. eScience, 2022, 2(1): 110-115.
[97] SUN T J, ZHANG W J, NIAN Q S, et al. Molecular engineering design for high-performance aqueous zinc-organic battery[J]. Nano-Micro Lett, 2023, 15(1): 36.
[98] KUNDU D P, OBERHOLZER P, GLAROS C, et al. Organic cathode for aqueous Zn-ion batteries: Taming a unique phase evolution toward stable electrochemical cycling[J]. Chem Mater, 2018, 30(11): 3874-3881.
[99] LIN Z R, SHI H Y, LIN L, et al. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries[J]. Nat Commun, 2021, 12(1): 1-9.
[100] GAO Y, YAN Z F, GRAY J L, et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions[J]. Nat Mater, 2019, 18(4): 384-389.
[101] WANG N, GUO Z W, NI Z G, et al. Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries[J]. Angew Chem Int Ed, 2021, 60(38): 20826-20832.
[102] DU W C, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy Environ Sci, 2020, 13(10): 3330-3360.
[103] HOU Z, ZHANG B. Boosting Zn metal anode stability: From fundamental science to design principles[J]. Eco Mat, 2022, 4(6): e12265.
[104] SHIN J, LEE J M, PARK Y, et al. Aqueous zinc ion batteries: Focus on zinc metal anodes[J]. Chem Sci, 2020, 11(8): 2028-2044.
[105] VERMA V, KUMAR S, MANALASTAS W Jr, et al. Undesired reactions in aqueous rechargeable zinc ion batteries[J]. ACS Energy Lett, 2021, 6(5): 1773-1785.
[106] LI C P, XIE X S, LIANG S Q, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries[J]. Energy Environ Mater, 2020, 3(2): 146-159.
[107] KIM Y, PARK Y, KIM M, et al. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries[J]. Nat Commun, 2022, 13(1): 1-10.
[108] WANG D D, LIU H X, LV D, et al. Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries[J]. Adv Mater, 2023, 35(2): 2207908.
[109] YANG J J, ZHAO R, WANG Y S, et al. Insights on artificial interphases of Zn and electrolyte: Protection mechanisms, constructing techniques, applicability, and prospective (adv. funct. mater. 14/2023)[J]. Adv Funct Mater, 2023, 33(14): 2213510.
[110] HU Y Z, FU C Y, CHAI S M, et al. Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries[J]. Adv Powder Mater, 2023, 2(2): 100093.
[111] ZHANG Q, LUAN J Y, HUANG X B, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode[J]. Nat Commun, 2020, 11: 3961.
[112] ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy Environ Sci, 2019, 12(6): 1938-1949.
[113] CAO L S, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nat Nanotechnol, 2021, 16(8): 902-910.
[114] LI D, CAO L S, DENG T, et al. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angew Chem Int Ed Engl, 2021, 60(23): 13035-13041.
[115] ZHANG W Y, DONG M Y, JIANG K R, et al. Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries[J]. Nat Commun, 2022, 13(1): 1-12.
[116] DU W C, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy Environ Sci, 2020, 13(10): 3330-3360.
[117] FAYETTE M, CHANG H J, LI X L, et al. High-performance InZn alloy anodes toward practical aqueous zinc batteries[J]. ACS Energy Lett, 2022, 7(6): 1888-1895.
[118] CAO Q H, GAO Y, PU J, et al. Gradient design of imprinted anode for stable Zn-ion batteries[J]. Nat Commun, 2023, 14(1): 1-11.
[119] ZHANG Z J, YANG X, LI P, et al. Biomimetic dendrite-free multivalent metal batteries[J]. Adv Mater, 2022, 34(47): 2206970.
[120] FAYETTE M, CHANG H J, LI X L, et al. High-performance InZn alloy anodes toward practical aqueous zinc batteries[J]. ACS Energy Lett, 2022, 7(6): 1888-1895.
[121] WANG S B, RAN Q, YAO R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries[J]. Nat Commun, 2020, 11(1): 1634.
[122] YANG Z F, ZHANG Q, LI W B, et al. A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angew Chem Int Ed, 2023, 62(3): 202215306.
[123] ZHANG M, YU P F, XIONG K R, et al. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: A scalable route to dendrite-free and flexible Zn anodes[J]. Adv Mater, 2022, 34(19): e2200860.
[124] DU W C, HUANG S, ZHANG Y F, et al. Enable commercial Zinc Powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization[J]. Energy Storage Mater, 2022, 45: 465-473.
[125] LI Q, WANG Y B, MO F N, et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure[J]. Adv Energy Mater, 2021, 11(14): 2003931.
[126] ZHOU J H, XIE M, WU F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Adv Mater, 2022, 34(1): 2106897.
[127] ZHENG J, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
[128] ZENG Y X, ZHANG X Y, QIN R F, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries[J]. Adv Mater, 2019, 31(36): 1903675.
[129] LI Z X, ROBERTSON A W. Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries[J]. Battery Energy, 2023, 2(1): 20220029.
[130] CAO J, ZHANG D D, CHANAJAREE R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive[J]. Adv Powder Mater, 2022, 1(1): 100007.
[131] LU H F, ZHANG D, JIN Q Z, et al. Gradient electrolyte strategy achieving long-life zinc anodes[J]. Adv Mater, 2023, 35(26): 2300606.
[132] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun, 2003(1): 70-71.
[133] ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids[J]. J Am Chem Soc, 2004, 126(29): 9142-9147.
[134] ABBOTT A P, CAPPER G, MCKENZIE K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. J Electroanal Chem, 2007, 599(2): 288-294.
[135] ABBOTT A P, MCKENZIE K J, RYDER K S. Electropolishing and electroplating of metals using ionic liquids based on choline chloride[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2007: 186-197.
[136] S?LDNER A, ZACH J, K?NIG B. Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash[J]. Green Chem, 2019, 21(2): 321-328.
[137] BOISSET A, MENNE S, JACQUEMIN J, et al. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries[J]. Phys Chem Chem Phys, 2013, 15(46): 20054-20063.
[138] HAN S D, RAJPUT N N, QU X H, et al. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes[J]. ACS Appl Mater Interfaces, 2016, 8(5): 3021-3031.
[139] WANG J, QIU H Y, ZHANG Q W, et al. Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries[J]. Energy Storage Mater, 2023, 58: 9-19.
[140] CHEN R W, ZHANG C Y, LI J W, et al. A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries[J]. Energy Environ Sci, 2023, 16(6): 2540-2549.
[141] SUO L, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350 (6263): 938-943.
[142] ZHAO J W, LI Y Q, PENG X, et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte[J]. Electrochem Commun, 2016, 69: 6-10.
[143] ZHANG C, HOLOUBEK J, WU X Y, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chem Commun, 2018, 54(100): 14097-14099.
[144] WU S L, CHEN Y T, JIAO T P, et al. Hybrid supercapacitors: An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles[J]. Adv Energy Mater, 2019, 9(47): 1902915.
[145] LIU Z X, LUO X B, QIN L P, et al. Progress and prospect of low-temperature zinc metal batteries[J]. Adv Powder Mater, 2022, 1(2): 100011.
[146] WANG J W, HUANG Y, LIU B B, et al. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte[J]. Energy Storage Mater, 2021, 41: 599-605.
[147] XU Z B, ZHANG Z R, LI X L, et al. Fluoride-based stable quasi-solid-state zinc metal battery with superior rate capability[J]. ACS Appl Mater Interfaces, 2023, 15(12): 15574-15584.
[148] GUO S, QIN L P, HU C, et al. Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery[J]. Adv Energy Mater, 2022, 12(25): 2200730.
[149] SONG Y, RUAN P C, MAO C W, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nano-Micro Lett, 2022, 14(1): 218.
[150] ZONG Y, HE H W, WANG Y Z, et al. Functionalized separator strategies toward advanced aqueous zinc-ion batteries[J]. Adv Energy Mater, 2023, 13(20): 2300403.
[151] ZHANG Q, LUAN J Y, HUANG X B, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode[J]. Nat Commun, 2020, 11(1): 1-7.
[152] ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy Environ Sci, 2019, 12(6): 1938-1949.
[153] CAO L S, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nat Nanotechnol, 2021, 16(8): 902-910.
[154] LI D, CAO L S, DENG T, et al. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angew Chem Int Ed Engl, 2021, 60(23): 13035-13041.
[155] CHANG H J, RODRíGUEZ-PéREZ I A, FAYETTE M, et al. Effects of water-based binders on electrochemical performance of Manganese dioxide cathode in mild aqueous zinc batteries[J]. Carbon Energy, 2021, 3(3): 473-481.
[156] DONG H B, LIU R R, HU X Y, et al. Cathode-electrolyte interface modification by binder engineering for high-performance aqueous zinc-ion batteries[J]. Adv Sci, 2023, 10(5): 2205084.
[157] JIA X X, LIU C F, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chem Rev, 2020, 120(15): 7795-7866.
[158] WU X W, XIANG Y H, PENG Q J, et al. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material[J]. J Mater Chem A, 2017, 5(34): 17990-17997.
[159] ALFARUQI M H, ISLAM S, PUTRO D Y, et al. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery[J]. Electrochim Acta, 2018, 276: 1-11.
[160] WAN F, NIU Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angew Chem Int Ed, 2019, 58(46): 16358-16367.
[161] BOCK D C, MARSCHILOK A C, TAKEUCHI K J, et al. A kinetics and equilibrium study of vanadium dissolution from vanadium oxides and phosphates in battery electrolytes: Possible impacts on ICD battery performance[J]. J Power Sources, 2013, 231: 219-225.
[162] STO??EVSKI I, BONAKDARPOUR A, CUADRA F, et al. Highly crystalline ramsdellite as a cathode material for near-neutral aqueous MnO2/Zn batteries[J]. Chem Commun, 2019, 55(14): 2082-2085.
[163] KUNDU D P, HOSSEINI VAJARGAH S, WAN L W, et al. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy Environ Sci, 2018, 11(4): 881-892.
[164] ZHAO H Y, XU J, YIN D D, et al. Electrolytes for batteries with earth-abundant metal anodes[J]. Chemistry A Eur J, 2018, 24(69): 18220-18234.
[165] MO F N, CHEN Z, LIANG G J, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities[J]. Adv Energy Mater, 2020, 10(16): 2000035.
[166] HUANG S, ZHU J C, TIAN J L, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries[J]. Chemistry A Eur J, 2019, 25(64): 14480-14494.
[167] ZHANG T S, TANG Y, GUO S, et al. Fundamentals and perspectives in de zinc-ion battery electrolytes: A comprehensive review[J]. Energy Environ Sci, 2020, 13(12): 4625-4665.
[168] YIN Y B, WANG S N, ZHANG Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery[J]. Adv Mater, 2020, 32(6): 1906803.
[169] ZHENG J X, TANG T, ZHAO Q, et al. Physical orphaning versus chemical instability: Is dendritic electrodeposition of Li fatal[J]. ACS Energy Lett, 2019, 4(6): 1349-1355.
[170] YUAN L B, HAO J N, KAO C C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy Environ Sci, 2021, 14(11): 5669-5689.
[171] VERMA V, KUMAR S, MANALASTAS W Jr, et al. Undesired reactions in aqueous rechargeable zinc ion batteries[J]. ACS Energy Lett, 2021, 6(5): 1773-1785.
[172] MA L T, LI Q, YING Y R, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes[J]. Adv Mater, 2021, 33(12): 2007406.
[173] GAO X Y, ZHANG J M, YIN W, et al. Recent progress and challenges of co-based compound for aqueous Zn battery[J]. Nano Sel, 2021, 2(9): 1642-1660.
[174] SHEN C, LI X, LI N, et al. Graphene-boosted, high-performance aqueous Zn-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10(30): 25446-25453.
[175] YAN L, ZHANG Y, NI Z G, et al. Chemically self-charging aqueous zinc-organic battery[J]. J Am Chem Soc, 2021, 143(37): 15369-15377.
[176] ZHANG T S, TANG Y, GUO S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review[J]. Energy Environ Sci, 2020, 13(12): 4625-4665.