[1] Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87– 91
[2] Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93
[3] Pan W,Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, YinWJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
[4] Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10(1): 1066
[5] Yang B, Yin L, Niu G, Yuan J H, Xue K H, Tan Z, Miao X S, Niu M, Du X, Song H, Lifshitz E, Tang J. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): 1904711
[6] Gao L, Yan Q F. Recent advances in lead halide perovskites for radiation detectors. Solar RRL, 2020, 4(2): 1900210
[7] WeiW, Zhang Y, Xu Q,Wei H T, Fang Y J, Wang Q, Deng Y H, Li T, Gruverman A, Cao L, Huang J S. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315–321
[8] Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu HM, Liu J Y,Wu L L, Zhou W, Liu X, Yang Y. Highly sensitive Xray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nature Photonics, 2019, 13(9): 602–608
[9] uang H Y, Abbaszadeh S. Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sensors Journal, 2020, 20(4): 1694–1704
[10] Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199– 2206
[11] Jeong D N, Yang J M, Park N G. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001
[12] Cheng X, Yang S, Cao B Q, Tao X T, Chen Z L. Single crystal perovskite solar cells: development and perspectives. Advanced Functional Materials, 2020, 30(4): 1905021
[13] Zeng K, Xue D J, Tang J. Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 2016, 31(6): 063001
[14] Xue D J, Shi H J, Tang J. Recent progress in material study and photovoltaic device of Sb2Se3. Acta Physica Sinica, 2015, 64(3): 038406 (in Chinese)
[15] Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
[16] Kim H K, Cunningham I A, Yin Z, Cho G. On the development of digital radiography detectors: a review. International Journal of Precision Engineering and Manufacturing, 2008, 9(4): 86–100
[17] Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W,Wang L, Li D, Deng H, Yi F, Tang J. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Advanced Energy Materials, 2017, 7(20): 1700866
[18] Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K,Webster R,Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720
[19] Hobson T D C, Hutter O S, Birkett M, Veal T D, Durose K. Growth and characterization of Sb2S3 single crystals for fundamental studies. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa: IEEE, 2018, 0818–0822
[20] Moy J P. Large area X-ray detectors based on amorphous silicon technology. Thin Solid Films, 1999, 337(1–2): 213–221 using 2D layered perovskite diodes. Science Advances, 2020, 6(15): eaay0815
[21] Jung N, Alving P L, Busse F, Conrads N, Meulenbrugge H M, Ruetten W, Schiebel U,Weibrecht M,Wieczorek H. Dynamic X-ray imaging system based on an amorphous silicon thin-film array. Physics of Medical Imaging, 1998, 3336: 396–407
[22] Zhao W, Law J, Waechter D, Huang Z, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection. Medical Physics, 1998, 25 (4): 539–549
[23] Zhao W, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Medical Physics, 1997, 24(12): 1819–1833
[24] Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A, Rowlands J A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Physica Status Solidi (B), 2009, 246 (8): 1794–1805
[25] XCOM. Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013). Available at physics.nist.gov/PhysRef- Data/Xcom/html/xcom1.html
[26] Yakunin S, Dirin D N, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko M V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10(9): 585–589
[27] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H,Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333–339
[28] Ji C M, Wang S S, Wang Y X, Chen H X, Li L N, Sun Z H, Sui Y, Wang S A, Luo J H. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Advanced Functional Materials, 2020, 30(5): 1905529
[29] Zhou Y,Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
[30] Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017, 10(1): 18–30
[31] Zhao M, Su J, Zhao Y, Luo P,Wang F, Han W, Li Y, Zu X, Qiao L, Zhai T. Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Advanced Functional Materials, 2020, 30(13): 1909849
[32] Kondrotas R, Zhang J, Wang C, Tang J. Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition. Solar Energy Materials and Solar Cells, 2019, 199: 16– 23
[33] Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R E I, Mai Y. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Communications, 2019, 10(1): 125
[34] Yuan C, Jin X, Jiang G, Liu W, Zhu C. Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors. Journal of Materials Science Materials in Electronics, 2016, 27(9): 8906–8910
[35] Phillips L J, Savory C N, Hutter O S, Yates P J, Shiel H, Mariotti S, Bowen L, Birkett M, Durose K, Scanlon D O, Major J D. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE Journal of Photovoltaics, 2019, 9(2): 544–551
[36] Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 2018, 9(1): 2179
[37] Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy, 2019, 64: 103929
[38] Li K, Chen C, Lu S, Wang C, Wang S, Lu Y, Tang J. Orientation engineering in low-dimensional crystal-structural materials via seed screening Sb2Se3. Advanced Materials, 2019, 31(44): 1903914
[39] Kasap S O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D, Applied Physics, 2000, 33 (21): 2853–2865
[40] Cousins P J, Neuhaus D H, Cotter J E. Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. Journal of Applied Physics, 2004, 95(4): 1854–1858
[41] Li K, Kondrotas R, Chen C, Lu S, Wen X, Li D, Luo J, Zhao Y, Tang J. Improved efficiency by insertion of Zn1 – xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018, 167: 10–17
[42] Wang C, Lu S, Li S, Wang S, Lin X, Zhang J, Kondrotas R, Li K, Chen C, Tang J. Efficiency improvement of flexible Sb2Se3 solar cells with non-toxic buffer layer via interface engineering. Nano Energy, 2020, 71: 104577
[43] Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 2019, 31 (44): 1904405
[44] Tokuda S, Adachi S, Sato T, Yoshimuta T, Nagata H, Uehara K, Izumi Y, Teranuma O, Yamada S. Experimental evaluation of a novel CdZnTe flat-panel X-ray detector for digital radiography and fluoroscopy. In: Proceedings of SPIE 4320, Medical Imaging 2001: Physics of Medical Imaging. San Diego: SPIE, 2001, 4320: 140– 147
[45] Basiricò L, Ciavatti A, Cramer T, Cosseddu P, Bonfiglio A, Fraboni B. Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V. Nature Communications, 2016, 7(1): 13063
[46] Temi?o I, Basiricò L, Fratelli I, Tamayo A, Ciavatti A, Mas-Torrent M, Fraboni B. Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nature Communications, 2020, 11(1): 2136
[47] Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X, Du X L. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics, 2019, 6(2): 351–359
[48] Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C J, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photons by solution-processed lead halide perovskite. Nature Photonics, 2015, 9(7): 444–449
[49] Tsai H, Liu F, Shrestha S, Fernando K, Tretiak S, Scott B, Vo D T, Strzalka J, Nie W. A sensitive and robust thin-film X-ray detector
[50] Basiricò L, Senanayak S P, Ciavatti A, Abdi-Jalebi MFraboni BSirringhaus H. Detection of X-rays by solution-processed cesiumcontaining mixed triple cation perovskite thin films. Advanced Functional Materials, 2019, 29(34): 1902346
[51] Mescher H, Schackmar F, Eggers H, Abzieher T, Zuber M, Hamann E, Baumbach T, Richards B S, Hernandez-Sosa G, Paetzold U W, Lemmer U. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Applied Materials & Interfaces, 2020, 12(13): 15774–15784
[52] Budil K S, Perry T S, Bell P M, Hares J D, Miller P L, Peyser T A, Wallace R, Louis H, Smith D E. The flexible X-ray imager. Review of Scientific Instruments, 1996, 67(2): 485–488
[53] Kuo T T,Wu C M, Lu H H, Chan I,Wang K, Leou K C. Flexible Xray imaging detector based on direct conversion in amorphous selenium. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 2014, 32(4): 041507
[54] Sun H, Zhao B, Yang D, Wangyang P, Gao X, Zhu X. Flexible Xray detector based on sliced lead iodide crystal. Phyica Status Solidi (RRL)-Rapid Research Letters, 2017, 11(2): 1600397 .