[3] Nascimento I M, Baptista J M, Jorge P A S, et al. Intensity-modulated optical fiber sensor for AC magnetic field detection[J]. IEEE Photon. Technol. Lett., 2015, 27(23): 2461-2464.
[4] Liu T, Han J, Hu H. Optical current sensor with dual-wavelength configuration for improving temperature robustness[J]. IEEE Photonics J., 2017, 9(1): 6800210.
[5] Clark N A. Soft-matter physics: ferromagnetic ferrofluids[J]. Nature, 2013, 504(7479): 229.
[6] Torres-Díaz I, Rinaldi C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids[J]. Soft Matter, 2014, 10(43): 8584.
[7] Li Z, Liao C, Song J, et al. Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component[J]. Photonics Research, 2016, 4(5): 197-201.
[8] Chantrell R, Bradbury A, Popplewell J, et al. Particle cluster configuration in magnetic fluids[J]. J. of Phys. D: Appl. Phys., 1980, 13(7): L119.
[9] Kruse T, Spanoudaki A, Pelster R. Monte Carlo simulations of polydisperse ferrofluids: Cluster formation and field-dependent microstructure[J]. Physical Rev. B, 2003, 68(5): 054208.
[10] Aoshima M, Satoh A. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in an applied magnetic field[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 16(1): 015004.
[11] Satoh A, Coverdale G N, Chantrell R W. Stokesian dynamics simulations of ferromagnetic colloidal dispersions subjected to a sinusoidal shear flow[J]. J. of Colloid and Interface Science, 2000, 231(2): 238-246.
[12] Satoh A, Chantrell R W, Coverdale G N. Brownian dynamics simulations of ferromagnetic colloidal dispersions in a simple shear flow[J]. J. of Colloid and Interface Science, 1999, 209(1): 44-59.
[13] Li Q, Xuan Y, Li B. Simulation and control scheme of microstructure in magnetic fluids[J]. Science in China Series E: Technological Sciences, 2007, 50(3): 371-379.
[15] Yang S, Chieh J, Horng H, et al. Origin and applications of magnetically tunable refractive index of magnetic fluid films[J]. Appl. Phys. Lett., 2004, 84(25): 5204-5206.
[16] Chen Y, Yang S, Tse W, et al. Thermal effect on the field-dependent refractive index of the magnetic fluid film[J]. Appl. Phys. Lett., 2003, 82(20): 3481-3483.
[17] Zhao Y, Wu D, Lv R, et al. Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field[J]. IEEE Trans. on Magnetics, 2014, 50(8): 1-5.
[18] Fang X, Xuan Y, Li Q. Theoretical investigation of the extinction coefficient of magnetic fluid[J]. J. of Nanoparticle Research, 2013, 15(5): 1-12.
[19] Inaba N, Miyajima H, Takahashi H, et al. Magneto-optical absorption in infrared region for magnetic fluid thin film[J]. IEEE Trans. on Magnetics, 1989, 25(5): 3866-3868.
[20] Martin J E, Hill K M, Tigges C P. Magnetic-field-induced optical transmittance in colloidal suspensions[J]. Phys. Rev. E, 1999, 59(5): 5676.
[21] Zu P, Chan C C, Lew W S, et al. Magneto-optical fiber sensor based on magnetic fluid[J]. Opt. Lett., 2012, 37(3): 398-400.
[22] Zu P, Chan C C, Koh G W, et al. Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer[J]. Sensors and Actuators B: Chemical, 2014, 191: 19-23.
[23] Hu T, Zhao Y, Li X, et al. Novel optical fiber current sensor based on magnetic fluid[J]. Chinese Opt. Lett., 2010, 8(4): 392-394.
[24] Zhang D, Wei H, Hu H, et al. Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity[J]. APL Photon., 2020, 5(7): 076112.
[25] Wang X, Zhao Y, Lv R, et al. Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid[J]. IEEE Trans. on Instrumentation and Measurement, 2021, 70: 9513708.1-9513708.8.
[26] Sun B, Bai M, Ma X, et al. Magnetic-based polydimethylsiloxane cap for simultaneous measurement of magnetic field and temperature[J]. J. of Lightwave Technol., 2022, 40(8): 2625-2630.
[27] Dai J, Yang M, Li X, et al. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating[J]. Optical Fiber Technol., 2011, 17(3): 210-213.
[28] Gao L, Zhu T, Deng M, et al. Long-period fiber grating D-shaped fiber using magnetic fluid for magnetic-field detection[J]. IEEE Photon. J., 2012, 4: 2094-2105.
[29] Pu S, Chen X, Chen Y, et al. Fiber-optic evanescent field modulator using a magnetic fluid as the cladding[J]. J. of Appl. Phys., 2006, 99(9): 093516.
[30] Layeghi A, Latifi H, Frazao O. Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid[J]. IEEE Photon. Technol. Lett., 2014, 26(19): 1904-1907.
[31] Luo L, Pu S, Tang J, et al. Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid[J]. Opt. Express, 2015, 23(14): 18133-18142.
[32] Ma Z, Miao Y, Li Y, et al. A highly sensitive magnetic field sensor based on a tapered microfiber[J]. IEEE Photon. J., 2018, 10(4): 1-8.
[33] Gao T Y, Ma G M, Wang Y K, et al. Effect of structure on sensitivity of magnetic field sensor based on non-adiabatic tapered optical fiber with magnetic fluid[J]. IEEE Sensors J., 2022, 22(5): 4022-4027.
[34] Zhang Y, Ning Y, Zhang M, et al. Spider silk-based fiber magnetic field sensor[J]. J. of Lightwave Technol., 2021, 39(20): 6631-6636.
[35] Lei X, Chen J, Shi F, et al. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid[J]. Opt. Communications, 2016, 374: 76-79.
[36] Ou Y, Chen J, Chen W, et al. A quasi-distributed fiber magnetic field sensor based on frequency-shifted interferometry fiber cavity ringdown technique[J]. Optics & Laser Technol., 2022, 146: 107607.
[37] Thakur H V, Nalawade S M, Gupta S, et al. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection[J]. Appl. Phys. Lett., 2011, 99: 161101.
[38] Zu P, Chan C C, Gong T, et al. Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid[J]. Appl. Phys. Lett., 2012, 101(24): 241118.
[39] Gao R, Jiang Y, Abdelaziz S. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Opt. Lett., 2013, 38(9): 1539-1541.
[40] Candiani A, Argyros A, Leon-Saval S, et al. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber[J]. Appl. Phys. Lett., 2014, 104(11): 111106.
[41] Liu Q, Li S, Wang X. Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting[J]. Sensors and Actuators B: Chemical, 2017, 242: 949-955.
[42] Wang W, Miao Y, Li Z, et al. Tunability of Hi-Bi photonic crystal fiber integrated with selectively filled magnetic fluid and microfluidic manipulation[J]. Appl. Opt., 2019, 58(4): 979-983.
[43] Liang H, Liu Y, Li H, et al. Magnetic-ionic-liquid-functionalized photonic crystal fiber for magnetic field detection[J]. IEEE Photon. Technol. Lett., 2018, 30(4): 359-362.
[44] Ding X Z, Yang H Z, Qiao X G, et al. Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid[J]. Appl. Opt., 2018, 57(9): 2050-2056.
[45] Zhang C, Pu S, Hao Z, et al. Magnetic field sensing based on whispering gallery mode with nanostructured magnetic fluid-infiltrated photonic crystal fiber[J]. Nanomaterials, 2022, 12(5): 862.
[46] Yu Z, Jiang J, Zhang X, et al. Fiber optic magnetic field sensor based on magnetic nanoparticle assembly in microcapillary ring resonator[J]. IEEE Photon. J., 2017, PP(99): 1-1.
[47] Chen Y, Han Q, Liu T, et al. Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid[J]. Opt. Lett., 2013, 38(20): 3999-4001.
[48] Wang H, Pu S, Wang N, et al. Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding[J]. Opt. Lett., 2013, 38(19): 3765-3768.
[49] Yue C, Ding H, Liu X. Magnetic-field measurement based on multicore fiber taper and magnetic fluid[J]. IEEE Trans. on Instrumentation and Measurement, 2018, 99: 1-12.
[50] Chen Y, Han Q, Yan W, et al. Magnetic field sensing based on a ferrofluid-coated multimode interferometer in a fiber-loop ring-down cavity[J]. IEEE Sensors J., 2018, 18(8): 3206-3210.
[51] Sun B, Fang F, Zhang Z, et al. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference[J]. Opt. Lett., 2018, 43(6): 1311-1314.
[52] Chen Y, Hu Y, Cheng H, et al. Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing[J]. J. of Lightwave Technol., 2020, 38(20): 5837-5843.
[53] Zu P, Chan C C, Lew W S, et al. Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber[J]. IEEE Photon. J., 2012, 4(2): 491-498.
[54] Zhao Y, Wu D, Lv R Q. Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid[J]. IEEE Photon. Technol. Lett., 2015, 27(1): 26-29.
[55] Dong S, Pu S, Wang H. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing[J]. Opt. Express, 2014, 22(16): 19108-19116.
[56] Wu J, Miao Y, Lin W, et al. Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid[J]. IEEE Photon. Technol. Lett., 2014, 26(15): 1581-1584.
[57] Pu S, Dong S. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints[J]. IEEE Photon. J., 2014, 6(4): 1-6.
[58] Zheng Y, Dong X, Yang R, et al. Magnetic field sensor with optical fiber bitaper-based interferometer coated by magnetic fluid[J]. IEEE Sensors J., 2014, 14(9): 3148-3151.
[59] Wu J, Miao Y, Song B, et al. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid[J]. Appl. Phys. Lett., 2014, 104(25): 252402.
[60] Huang G, Zhou B, Chen Z, et al. Magnetic-field sensor utilizing the ferrofluid and thin-core fiber modal interferometer[J]. IEEE Sensors J., 2015, 15(1): 333-336.
[61] Peng B. An all-fiber magnetic field sensor based on dual-S-shaped optic fiber integrated with magnetic fluid[J]. IEEE Sensors J., 2016, 16(4): 958-964.
[62] Miao Y, Wu J, Lin W, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid[J]. Opt. Express, 2013, 21(24): 29914-29920.
[63] Deng M, Liu D, Li D. Magnetic field sensor based on asymmetric optical fiber taper and magnetic fluid[J]. Sensors and Actuators A: Physical, 2014, 211: 55-59.
[64] Miao Y, Ma X, He Y, et al. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid[J]. Nanophotonics, 2017, 6(1): 357-363.
[65] Wu W, Cao Y, Zhang H, et al. Compact magnetic field sensor based on a magnetic-fluid-integrated fiber interferometer[J]. IEEE Magnetics Lett., 2019, 10: 8103605.
[66] Taghizadeh M, Bozorgzadeh F, Ghorbani M. Designing magnetic field sensor based on tapered photonic crystal fibre assisted by a ferrofluid[J]. Scientific Reports, 2021, 11(1): 1-9.
[67] Chen H, Shao Z, Zhang X, et al. Highly sensitive magnetic field sensor using tapered Mach-Zehnder interferometer[J]. Optics and Lasers in Engineering, 2018, 107: 78-82.
[68] Zhang S, Li X, Liu Y, et al. A MMF-TSMF-MMF structure coated magnetic fluid for magnetic field measurement[J]. IEEE Photon. Technol. Lett., 2021, 33(19): 1105-1108.
[69] Chen Y, Han Q, Liu T, et al. Magnetic field sensor based on ferrofluid and photonic crystal fiber with offset fusion splicing[J]. IEEE Photon. Technol. Lett., 2016, 28(19): 2043-2046.
[70] Liu T, Chen Y, Han Q, et al. Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid[J]. IEEE Photon. J., 2014, 6(6): 1-7.
[71] Chen Y, Liu T, Han Q, et al. Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing[J]. Photon. Research, 2016, 4(6): 322-326.
[72] Rodríguez-Schwendtner E, Navarrete M, Díaz-Herrera N, et al. Advanced plasmonic fiber-optic sensor for high sensitivity measurement of magnetic field[J]. IEEE Sensors J., 2019, 19(17): 7355-7364.
[73] Liu Y, Liao Q, Wang Z, et al. Compact magnetic field sensor based on plasmonic fiber-tip[J]. Opt. Express, 2021, 29(23): 38904-38914.
[74] Weng S, Pei L, Wang J, et al. High sensitivity side-hole fiber magnetic field sensor based on surface plasmon resonance[J]. Chinese Opt. Lett., 2016, 14(11): 19-22.
[75] Ying Y, Zhao Y, Lv R Q, et al. Magnetic field measurement using surface plasmon resonance sensing technology combined with magnetic fluid photonic crystal[J]. IEEE Trans. on Instrumentation and Measurement, 2016, 65(1): 170-176.
[76] Rodríguez-Schwendtner E, Díaz-Herrera N, Navarrete M, et al. Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields[J]. Sensors and Actuators A: Physical, 2017, 264: 58-62.
[77] Zhang Z, Guo T, Zhang X, et al. Plasmonic fiber-optic vector magnetometer[J]. Appl. Phys. Lett., 2016, 108(10): 289.
[78] Yin J, Yan P, Chen H, et al. All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles[J]. Appl. Phys. Lett., 2017, 110(23): 231104.
[79] Violakis G, Korakas N, Pissadakis S. Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber[J]. Opt. Lett., 2018, 43(1): 142-145.
[80] Li Y, Pu S, Zhao Y, et al. All-fiber-optic vector magnetic field sensor based on side-polished fiber and magnetic fluid[J]. Opt. Express, 2019, 27(24): 35182-35188.
[81] Hao Z, Li Y, Pu S, et al. Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid[J]. Nanophotonics, 2022.
[82] Jiang Z, Dong J, Hu S, et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid[J]. Opt. Lett., 2018, 43(19): 4743-4746.
[83] Xu R, Niu G, Xue Y, et al. An all-optical vector magnetic field sensor based on magnetic fluid and side-polished hollow-core optical fiber[J]. IEEE Sensors J., 2021, 21(19): 21410-21416.
[84] Lin Zt, Zhao Y, Zhao R, et al. High sensitivity and low loss vector magnetic field sensor based on the C-type optical fiber[J]. IEEE Trans. on Magnetics, 2021, 57(11): 4002308.1-4002308.8.
[85] Chen Y, Sun W, Zhang Y, et al. Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer[J]. Nanomaterials, 2019, 9(5): 785.
[86] Chen Y, Hu Y, Zhang Y, et al. A portable smartphone-based vector-magnetometer illuminated and imaged via a side-polished-fiber functionalized with magnetic fluid[J]. IEEE Sensors J., 2019, 20(3): 1283-1289.
[87] Tian H, Song Y, Li Y, et al. Fiber-optic vector magnetic field sensor based on mode interference and magnetic fluid in a two-channel tapered structure[J]. IEEE Photon. J., 2019, 11(6): 1-9.
[88] Cui J, Qi D, Tian H, et al. Vector optical fiber magnetometer based on capillaries filled with magnetic fluid[J]. Appl. Opt., 2019, 58(10): 2754-2760.
[89] Lin Q, Hu Y, Yan F, et al. Half-side gold-coated hetero-core fiber for highly sensitive measurement of a vector magnetic field[J]. Opt. Lett., 2020, 45(17): 4746-4749.
[90] Zhu L, Lin Q, Yao K, et al. Intensity-demodulated fiber-optic vector magnetic field sensor based on fiber-optic evanescent field[J]. Opt. & Laser Technol., 2022, 152: 108087.
[91] Li Y, Pu S, Hao Z, et al. Vector magnetic field sensor based on U-bent single-mode fiber and magnetic fluid[J]. Opt. Express, 2021, 29(4): 5236-5246.
[92] Xiong Z, Guan C, Duan Z, et al. All-optical vector magnetic field sensor based on a side-polished two-core fiber Michelson interferometer[J]. Opt. Express, 2022, 30(13): 22746-22754.
[93] Zhu L, Lin Q, Yao K, et al. Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid[J]. IEEE Trans. on Instrumentation and Measurement, 2021, 70: 1-9.
[94] Yin J, Ruan S, Liu T, et al. All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber[J]. Sensors and Actuators B: Chemical, 2017, 238: 518-524.
[95] Layeghi A, Latifi H. Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles[J]. Opt. & Laser Technol., 2018, 102: 184-190.
[96] Bao W, Qiao X, Rong Q, et al. Fiber optic vector magnetometer based on magnetic fluid and fiber Bragg grating written on a multi-clad fiber[J]. IEEE Sensors J., 2018, 18(18): 7486-7491.
[97] Zhang J, Chen F, Wang R, et al. Vector magnetic field measurement based on magnetic fluid and high-order cladding-mode Bragg grating[J]. Opt. & Laser Technol., 2021, 143: 107264.
[98] Lu T, Sun Y, Moreno Y, et al. Excessively tilted fiber grating-based vector magnetometer[J]. Opt. Lett., 2019, 44(10): 2494-2497.
[99] Zhang J, Qiao X, Wang R, et al. Highly-sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid[J]. IEEE Sensors J., 2019, 19(7): 2576-2580.
[100] Jiang C, Liu Y, Mou C, et al. Fiber vector magnetometer based on polarization-maintaining fiber long-period grating with ferrofluid nanoparticles[J]. J. of Lightwave Technol., 2022, 40(8): 2494-2502.
[101] Zhang Z, Fu L, Ma Q, et al. Vector magnetometer based on localized scattering between optical fiber spectral combs and magnetic nanoparticles[J]. J. of Lightwave Technol., 2021, 39: 6599-6665.
[102] Chen Y, Han Q, Liu T. All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding[J]. Chinese Phys. B, 2015, 24(1): 014214.