• Acta Photonica Sinica
  • Vol. 44, Issue 7, 706001 (2015)
LIU Yan-fei*, DAI Yong-hong, ZHOU Hao-tian, SHAN Xin, and AI Yong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20154407.0706001 Cite this Article
    LIU Yan-fei, DAI Yong-hong, ZHOU Hao-tian, SHAN Xin, AI Yong. Effect of Vibration and Far Field Turbulence on the Fine Tracking of Airborne Optical Ccommunication Terminal[J]. Acta Photonica Sinica, 2015, 44(7): 706001 Copy Citation Text show less
    References

    [1] HYDE G, EDELSON B I. Laser satellite communications: current status and directions[J]. Space Policy, 1997, 13(1): 47-54.

    [2] TOYOSHIMA M. Trends in satellite communications and the role of optical free-space communications invited[J]. Journal of Optical Networking, 2005, 4(6): 300-311.

    [3] TOYOSHIMA M, MUNEMASA Y, TAKENAKA H, et al. Introduction of a terrestrial free-space optical communications network facility: IN-orbit and Networked Optical ground stations experimental Verification Advanced testbed (INNOVA)[C]. Free-Space Laser Communication and Atmospheric Propagation XXVI, 2014, 8971: 89710R.

    [4] CHAN V, ARNOLD R. Results of 1 GBPS aircraft to ground lasercom validation demonstration[C]. SPIE, 1997, 2990: 52-59.

    [5] GANGL M E, FISHER D S, ZIMMERMANN J, et al. Airborne laser communication terminal for intelligence, surveillance and reconnaissance[C]. Free-Space Laser Communications IV. Proceedings of SPIE, 2004, 5550: 92-103.

    [6] LOUTHAIN J A, SCHMIDT J D. Anisoplanatism in airborne laser communication[J]. Optics Express, 2008, 16(14): 10769-85.

    [7] JUMPER E J, ZENK M A, GORDEYEV S, et al. Airborne aero-optics laboratory[J]. Optical Engineering, 2013, 52(7): 071408.

    [8] FENNER W R. Future trends in crosslink communications[C]. SPIE, 1993, 1866: 1-8.

    [9] ORTIZ G G, LEE S, MONACOS S, et al. Design and development of a robust ATP subsystem for the altair UAV-to-ground lasercomm 2.5 Gbps demonstration[C]. Laser Communication Technologies XV, SPIE, 2003, 4975: 103-114.

    [10] BISWAS A, KOVALIK J, REGEHR M W, et al. Emulating an optical planetary access link with an aircraft[C]. Free-Space Laser Communications Technologies XXII, SPIE, 2010, 7587: 75870B.

    [11] JIANG Hui-lin, LIU Zhi-gang, TONG Shou-feng, et al. Analysis for the environmental adaptation and key technologies of airborne laser communication system[J]. Infrared and Laser Engineering, 2007, 36: 299-302.

    [12] LV Chun-lei, TONG Shou-feng, SONG Yan-song. Optical-path optimization design of compound axis and APT study of airborne laser communication[J]. Acta Photonica Sinica, 2012, 41(6): 649-653.

    [13] ZHAO Xin, LIU Yunqing, TONG Shou-feng. Line-of-sight initial alignment model and test in dynamic space laser communication[J]. Chinese Journal of Lasers, 2014, 41(5): 151-156.

    [14] ZHAO Xin, SONG Yan-song, TONG Shou-feng, et al. Dynamic demonstration experiment of acquisition, pointing and tracking system in space laser communications[J]. Chinese Journal of Lasers, 2014, 41(3): 131-136.

    [15] CAO Yang, RONG Jian, ZHANG Hong-min, et al. Fuzzy variable structure multiple-model tracking for airborne laser communication system[J]. Acta Photonica Sinica, 2013, 42(1): 1-6.

    [16] NIKULIN V V, KHANDEKAR R M. Demonstration of a mobile tracking system for laser communications[C]. IEEE 26th Convention of Electrical and Electronics Engineers in Israel, 2010, 000781-000785.

    [17] LIU Yun-qing, JIANG Hui-lin, TONG Shou-feng. Stabilizational tracking technology for atmospheric laser communication system[J]. Acta Photonica Sinica, 2011, 40(7): 972-977.

    LIU Yan-fei, DAI Yong-hong, ZHOU Hao-tian, SHAN Xin, AI Yong. Effect of Vibration and Far Field Turbulence on the Fine Tracking of Airborne Optical Ccommunication Terminal[J]. Acta Photonica Sinica, 2015, 44(7): 706001
    Download Citation