• Journal of Synthetic Crystals
  • Vol. 50, Issue 6, 1170 (2021)
GU Yang1, WANG Zhen1, WU Hongkun1, XIAO Jie1, and ZENG Xiaoyuan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    GU Yang, WANG Zhen, WU Hongkun, XIAO Jie, ZENG Xiaoyuan. Research Progress of Key Materials for Lithium Carbon Dioxide Batteries[J]. Journal of Synthetic Crystals, 2021, 50(6): 1170 Copy Citation Text show less
    References

    [1] LI X L, ZHOU J W, ZHANG J X, et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries[J]. Advanced Materials, 2019, 31(39): 1903852.

    [2] ZHANG X, ZHANG Q, ZHANG Z, et al. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes[J]. Chemical Communications (Cambridge, England), 2015, 51(78): 14636-14639.

    [3] SONG L, WANG T, WU C, et al. A long-life Li-CO2 battery employing a cathode catalyst of cobalt-embedded nitrogen-doped carbon nanotubes derived from a Prussian blue analogue[J]. Chemical Communications (Cambridge, England), 2019, 55(85): 12781-12784.

    [4] GE B C, SUN Y, GUO J X, et al. A Co-doped MnO2 catalyst for Li-CO2 batteries with low overpotential and ultrahigh cyclability[J]. Small, 2019, 15(34): 1902220.

    [5] PIPES R, BHARGAV A, MANTHIRAM A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37119-37124.

    [6] AHMADIPARIDARI A, WARBURTON R E, MAJIDI L, et al. A long-cycle-life lithium-CO2 battery with carbon neutrality[J]. Advanced Materials, 2019, 31(40): 1902518.

    [7] LU S Y, SHANG Y, MA S Y, et al. Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li-CO2 batteries[J]. Electrochimica Acta, 2019, 319: 958-965.

    [8] XU S M, DAS S K, ARCHER L A. The Li-CO2 battery: a novel method for CO2 capture and utilization[J]. RSC Advances, 2013, 3(18): 6656.

    [9] LIU Y L, WANG R, LYU Y C, et al. Rechargeable Li/CO2-O2 (2∶1) battery and Li/CO2 battery[J]. Energy & Environmental Science, 2014, 7(2): 677.

    [10] NMETH K, SRAJER G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries[J]. RSC Advances, 2014, 4(4): 1879-1885.

    [11] HOU Y Y, WANG J Z, LIU L L, et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries[J]. Advanced Functional Materials, 2017, 27(27): 1700564.

    [12] XIE J F, LIU Q, HUANG Y Y, et al. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO[J]. Journal of Materials Chemistry A, 2018, 6(28): 13952-13958.

    [13] MEINI S, TSIOUVARAS N, SCHWENKE K U, et al. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11478-11493.

    [14] ZHAO Z W, HUANG J, PENG Z Q. Achilles’ heel of lithium-air batteries: lithium carbonate[J]. Angewandte Chemie International Edition, 2018, 57(15): 3874-3886.

    [15] QIAO Y, YI J, WU S C, et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage[J]. Joule, 2017, 1(2): 359-370.

    [16] YANG S X, QIAO Y, HE P, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J]. Energy & Environmental Science, 2017, 10(4): 972-978.

    [17] ZHANG Z, ZHANG Q, CHEN Y, et al. The first introduction of graphene to rechargeable Li-CO2 batteries[J]. Angewandte Chemie, 2015, 127(22): 6650-6653.

    [18] ZHANG B W, JIAO Y, CHAO D L, et al. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries[J]. Advanced Functional Materials, 2019, 29(49): 1904206.

    [19] XING W, LI S, DU D F, et al. Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view[J]. Electrochimica Acta, 2019, 311: 41-49.

    [20] XIAO Y, DU F, HU C G, et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts[J]. ACS Energy Letters, 2020, 5(3): 916-921.

    [21] CHANG Z, XU J, ZHANG X, et al. Recent progress in electrocatalyst for Li-O2 batteries[J]. Advanced Energy Materials, 2017, 7(23): 1700875.

    [22] CI L J, SONG L, JIN C H, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nature Materials, 2010, 9(5): 430-435.

    [23] LU J, LEE Y J, LUO X, et al. A lithium-oxygen battery based on lithium superoxide[J]. Nature, 2016, 529(7586): 377-382.

    [24] LIU T, LIU Z G, KIM G, et al. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O2battery[J]. Angewandte Chemie International Edition, 2017, 56(50): 16057-16062.

    [25] BIE S Y, DU M L, HE W X, et al. Carbon nanotube@RuO2 as a high performance catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5146-5151.

    [26] XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Advanced Materials, 2018, 30(51): 1803124.

    [27] GAO D F, ZEGKINOGLOU I, DIVINS N J, et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J]. ACS Nano, 2017, 11(5): 4825-4831.

    [28] ZHANG Z, ZHANG Z W, LIU P F, et al. Identification of cathode stability in Li-CO2batteries with Cu nanoparticles highly dispersed on N-doped graphene[J]. Journal of Materials Chemistry A, 2018, 6(7): 3218-3223.

    [29] AHMAD M Z, PETERS T A, KONNERTZ N M, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J]. Separation and Purification Technology, 2020, 230: 115858.

    [30] LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325.

    [31] WANG X G, WANG C Y, XIE Z J, et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator[J]. Chem Electro Chem, 2017, 4(9): 2145-2149.

    [32] CHEN J M, ZOU K Y, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484.

    [33] LI X, YANG S X, FENG N N, et al. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance[J]. Chinese Journal of Catalysis, 2016, 37(7): 1016-1024.

    [34] MEKONNEN Y S, KNUDSEN K B, MY'RDAL J S, et al. Communication: the influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-air batteries[J]. The Journal of Chemical Physics, 2014, 140(12): 121101.

    [35] HU X F, LI Z F, CHEN J. Flexible Li-CO2 batteries with liquid-free electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(21): 5785-5789.

    [36] LI C, GUO Z Y, YANG B C, et al. A rechargeable Li-CO2 battery with a gel polymer electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(31): 9126-9130.

    [37] LIU Y, LIN D, LIANG Z, et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode[J]. Nat Commun, 2016, 7: 10992.

    [38] LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li-CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922.

    [39] MUSHTAQ M, GUO X W, BI J P, et al. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery[J]. Rare Metals, 2018, 37(6): 520-526.

    [40] CHEN C J, YANG J J, CHEN C H, et al. Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li-CO2 batteries[J]. Nanoscale, 2020, 12(15): 8385-8396.

    GU Yang, WANG Zhen, WU Hongkun, XIAO Jie, ZENG Xiaoyuan. Research Progress of Key Materials for Lithium Carbon Dioxide Batteries[J]. Journal of Synthetic Crystals, 2021, 50(6): 1170
    Download Citation