• Journal of Synthetic Crystals
  • Vol. 49, Issue 10, 1782 (2020)
LIU Chenglong*, XU Weikai, LYU Shuchen, and QI Wuchao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LIU Chenglong, XU Weikai, LYU Shuchen, QI Wuchao. Band Gaps Characteristics of a Bending-Oriented Thermal Expansion Lattice Metamaterials[J]. Journal of Synthetic Crystals, 2020, 49(10): 1782 Copy Citation Text show less
    References

    [1] Kushwaha M S, Halevi P, Dobrzynski L. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025.

    [2] Kushwaha M S. Classical band structure of periodic elastic composites[J]. International Journal of Modern Physics B, 1996, 10(9): 977-1094.

    [3] Jensen J. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration, 2003, 266: 1053-1078.

    [4] Chen Y, Qian F, Zuo L, et al. Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments[J]. Extreme Mechanics Letters, 2017, 17: 24-32.

    [5] Hussein M I, Leamy M J, Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802.

    [6] Cummer S A, Christensen J, Alu A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 16001.

    [7] Hu G, Tang L, Banerjee A, et al. Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting[J]. Journal of Vibration and Acoustics, 2017,139: 011012.

    [10] Liu Z Y, Zhang X X, Mao Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1 734-1 736.

    [11] Huang Y, Liu S T, Zhao J. Optimal design of two-dimensional band-gap materials for uni-directional wave propagation[J]. Structural and Multidisciplinary Optimization, 2013, 48 (3): 487-499.

    [12] Xu W K, Ning J Y, Lin Z B, et al. Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals[J]. Materials Today Communications, 2020, 22: 10080.

    [15] Wei K, Chen H, Pei Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 173-191.

    [16] Lehman J, Lakes R. Stiff lattices with zero thermal expansion[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(11): 1263-1268.

    [17] Lehman J, Lakes R. Stiff, strong, zero thermal expansion lattices via material hierarchy[J]. Composite Structures, 2014, 107: 654-663.

    [18] Lehman J, Lakes R. Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization[J]. International Journal of Mechanics and Materials in Design, 2013, 9(3): 213-225.

    [19] Zhang Y C, Liang Y J, Liu S T, et al. A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Acta Mechanica Sinica, 2019, 35(3): 507-517.

    [20] Zhang Y C, Liang Y J, Liu S T, et al. A new design for enhanced stiffness of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Materials Research Express, 2019, 6(1): 015705.

    [23] Wu B, Wei R J, Zhao H Y, et al. Phononic band gaps in two-dimensional hybrid triangular lattice[J]. Acta Mechanica Solida Sinica, 2010, 23(3): 255-259.

    [24] Caballero D, Sanchez-Dehesa J, Rubio C, et al. Large two-dimensional sonic band gaps[J]. Physical Review E, 1999, 60: 6316-6319.

    LIU Chenglong, XU Weikai, LYU Shuchen, QI Wuchao. Band Gaps Characteristics of a Bending-Oriented Thermal Expansion Lattice Metamaterials[J]. Journal of Synthetic Crystals, 2020, 49(10): 1782
    Download Citation