• Acta Physica Sinica
  • Vol. 69, Issue 4, 047101-1 (2020)
Xian-Da Xu, Lei Zhao, and Wei-Feng Sun*
Author Affiliations
  • Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Heilongjiang Provincial Key Laboratory of Dielectric Engineering, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
  • show less
    DOI: 10.7498/aps.69.20190657 Cite this Article
    Xian-Da Xu, Lei Zhao, Wei-Feng Sun. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes[J]. Acta Physica Sinica, 2020, 69(4): 047101-1 Copy Citation Text show less
    (a) Schematic structure of graphene nanomesh with periodically patterned holes; (b) the supperlattice cells (left) and Y-junction connection areas (right) for three types of vacant holes with different magnetic distributions, black beads represent carbon atoms distributed with net spin moment at the edge of G42 (MA) and G84 (MC) holes in graphene nanomeshes.
    Fig. 1. (a) Schematic structure of graphene nanomesh with periodically patterned holes; (b) the supperlattice cells (left) and Y-junction connection areas (right) for three types of vacant holes with different magnetic distributions, black beads represent carbon atoms distributed with net spin moment at the edge of G42 (MA) and G84 (MC) holes in graphene nanomeshes.
    Calculated electronic structures of G60 patterned graphene nanomeshes: (a) Energy band structures of the G60 nanomeshes with supplattice cell (N, N) (N = 10 – 15); (b) the electron density distribution of the σ* state at K point in the energy ~0.2 eV for N = 12; (c) the projected density of states on the carbon atoms of hole edge for N = 12. The reference energy zero is set as Fermi energy level indicated with horizontal dot line.
    Fig. 2. Calculated electronic structures of G60 patterned graphene nanomeshes: (a) Energy band structures of the G60 nanomeshes with supplattice cell (N, N) (N = 10 – 15); (b) the electron density distribution of the σ* state at K point in the energy ~0.2 eV for N = 12; (c) the projected density of states on the carbon atoms of hole edge for N = 12. The reference energy zero is set as Fermi energy level indicated with horizontal dot line.
    The energy band structures of pristine graphene supperlattices with lattice vector extending from (1, 1) to (7, 7). Fermi energy level is referenced as energy zero indicated by horizontal dot line.
    Fig. 3. The energy band structures of pristine graphene supperlattices with lattice vector extending from (1, 1) to (7, 7). Fermi energy level is referenced as energy zero indicated by horizontal dot line.
    Carbon-carbon atomic distance d at hole edge (a) and energy level of the σ* state at K point (b) as a function of supperlattice cell size N for the G60 (N, N) graphene nanomeshes, with Fermi energy level referenced as energy zero.
    Fig. 4. Carbon-carbon atomic distance d at hole edge (a) and energy level of the σ* state at K point (b) as a function of supperlattice cell size N for the G60 (N, N) graphene nanomeshes, with Fermi energy level referenced as energy zero.
    Energy band structures of the graphene nanomeshes with (a) MA (G42) and (b) MC (G84) patterned holes, respectively. The up and down panels represent nanomeshes without and with hydrogen passivation at hole edge, respectively.
    Fig. 5. Energy band structures of the graphene nanomeshes with (a) MA (G42) and (b) MC (G84) patterned holes, respectively. The up and down panels represent nanomeshes without and with hydrogen passivation at hole edge, respectively.
    Bandgap width varying with cell size (N, N) of (a) G60, (b) G42 and (c) G84 graphene nanomeshes with NM, MC and MA vacancy holes respectively.
    Fig. 6. Bandgap width varying with cell size (N, N) of (a) G60, (b) G42 and (c) G84 graphene nanomeshes with NM, MC and MA vacancy holes respectively.
    Xian-Da Xu, Lei Zhao, Wei-Feng Sun. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes[J]. Acta Physica Sinica, 2020, 69(4): 047101-1
    Download Citation