• Photonics Research
  • Vol. 12, Issue 6, 1201 (2024)
Jiajun Ma1, Chunmei Ouyang1,*, Yuting Yang2,6, Dongyang Wang3,7..., Hongyi Li1, Li Niu1, Yi Liu1, Quan Xu1, Yanfeng Li1, Zhen Tian1, Jiaguang Han1,4 and Weili Zhang5,8|Show fewer author(s)
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Optoelectronics Information and Technology, Tianjin University, Tianjin 300072, China
  • 2School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
  • 3Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 4Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 5School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 6e-mail: yangyt@cumt.edu.cn
  • 7e-mail: dongyang.wang@soton.ac.uk
  • 8e-mail: weili.zhang@okstate.edu
  • show less
    DOI: 10.1364/PRJ.518426 Cite this Article Set citation alerts
    Jiajun Ma, Chunmei Ouyang, Yuting Yang, Dongyang Wang, Hongyi Li, Li Niu, Yi Liu, Quan Xu, Yanfeng Li, Zhen Tian, Jiaguang Han, Weili Zhang, "Asymmetric frequency multiplexing topological devices based on a floating edge band," Photonics Res. 12, 1201 (2024) Copy Citation Text show less
    References

    [1] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [2] T. Ozawa, H. M. Price, A. Amo. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [3] D. Smirnova, D. Leykam, Y. Chong. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    [4] S. Ma, B. Yang, S. Zhang. Topological photonics in metamaterials. Photon. Insights, 1, R02(2022).

    [5] A. B. Khanikaev, S. H. Mousavi, W. K. Tse. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [6] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [7] D. Wang, B. Yang, W. Gao. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor. Nat. Phys., 15, 1150-1155(2019).

    [8] M. Kim, Z. Jacob, J. Rho. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl., 9, 130(2020).

    [9] G. J. Tang, X. T. He, F. L. Shi. Topological photonic crystals: physics, designs, and applications. Laser Photon. Rev., 16, 2100300(2022).

    [10] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [11] Z. Wang, Y. D. Chong, J. D. Joannopoulos. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [12] F. D. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [13] J. Chen, Z. Y. Li. Prediction and observation of robust one-way bulk states in a gyromagnetic photonic crystal. Phys. Rev. Lett., 128, 257401(2022).

    [14] Z. Wang, Y. Chong, J. D. Joannopoulos. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [15] L. H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [16] T. Ma, A. B. Khanikaev, S. H. Mousavi. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [17] X. Cheng, C. Jouvaud, X. Ni. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [18] Y. Yang, Y. F. Xu, T. Xu. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [19] M. A. Gorlach, X. Ni, D. A. Smirnova. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun., 9, 909(2018).

    [20] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [21] X. Wu, Y. Meng, J. Tian. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun., 8, 1304(2017).

    [22] Y. Kang, X. Ni, X. Cheng. Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun., 9, 3029(2018).

    [23] M. I. Shalaev, W. Walasik, A. Tsukernik. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31-34(2019).

    [24] J. W. You, Q. Ma, Z. Lan. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [25] J. W. Dong, X. D. Chen, H. Zhu. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [26] Y. Wu, C. Li, X. Hu. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater., 5, 1700357(2017).

    [27] G. Harari, M. A. Bandres, Y. Lumer. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [28] M. A. Bandres, S. Wittek, G. Harari. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [29] L. Yang, G. Li, X. Gao. Topological-cavity surface-emitting laser. Nat. Photonics, 16, 279-283(2022).

    [30] Z. Gao, Z. Yang, F. Gao. Valley surface-wave photonic crystal and its bulk/edge transport. Phys. Rev. B, 96, 201402(2017).

    [31] X. T. He, E. T. Liang, J. J. Yuan. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [32] J.-W. Liu, F.-L. Shi, X.-T. He. Valley photonic crystals. Adv. Phys. X, 6, 1905546(2021).

    [33] F. Gao, H. Xue, Z. Yang. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2017).

    [34] Y. Yang, Y. Yamagami, X. Yu. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [35] A. Kumar, Y. J. Tan, N. Navaratna. Slow light topological photonics with counter-propagating waves and its active control on a chip. Nat. Commun., 15, 926(2024).

    [36] R. Jia, S. Kumar, T. C. Tan. Valley-conserved topological integrated antenna for 100-Gbps THz 6G wireless. Sci. Adv., 9, eadi8500(2023).

    [37] M. Gupta, A. Kumar, R. Singh. Electrically tunable topological notch filter for THz integrated photonics. Adv. Opt. Mater., 11, 2301051(2023).

    [38] Y. Li, Y. Yu, F. Liu. Topology-controlled photonic cavity based on the near-conservation of the valley degree of freedom. Phys. Rev. Lett., 125, 213902(2020).

    [39] A. Kumar, M. Gupta, P. Pitchappa. On-chip active control of ultra-high-Q terahertz photonic topological cavities. Adv. Mater., 34, e2202370(2022).

    [40] Y. Chen, X.-T. He, Y.-J. Cheng. Topologically protected valley-dependent quantum photonic circuits. Phys. Rev. Lett., 126, 230503(2021).

    [41] H. Wang, L. Sun, Y. He. Asymmetric topological valley edge states on silicon‐on‐insulator platform. Laser Photon. Rev., 16, 2100631(2022).

    [42] J. Ma, C. Ouyang, Y. Yang. Multichannel valley topological beam splitter based on different types of domain walls. Appl. Phys. Lett., 122, 241701(2023).

    [43] F. Zhang, L. He, H. Zhang. Experimental realization of topologically‐protected all‐optical logic gates based on silicon photonic crystal slabs. Laser Photon. Rev., 17, 2200329(2023).

    [44] Y. Zeng, U. Chattopadhyay, B. Zhu. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [45] B. Kramer, A. MacKinnon. Localization: theory and experiment. Rep. Prog. Phys., 56, 1469(1993).

    [46] C. A. Rosiek, G. Arregui, A. Vladimirova. Observation of strong backscattering in valley-Hall photonic topological interface modes. Nat. Photonics, 17, 386-392(2023).

    [47] K. L. Tsakmakidis, A. D. Boardman, O. Hess. ‘Trapped rainbow’ storage of light in metamaterials. Nature, 450, 397-401(2007).

    [48] Q. Gan, Y. J. Ding, F. J. Bartoli. ‘Rainbow’ trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett., 102, 056801(2009).

    [49] F. Horst, W. M. Green, S. Assefa. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652-11658(2013).

    [50] W. Deng, L. Chen, H. Zhang. On‐chip polarization‐ and frequency‐division demultiplexing for multidimensional terahertz communication. Laser Photon. Rev., 16, 2200136(2022).

    [51] H. Hu, D. Ji, X. Zeng. Rainbow trapping in hyperbolic metamaterial waveguide. Sci. Rep., 3, 1249(2013).

    [52] L. Zhang, M. Z. Chen, W. Tang. A wireless communication scheme based on space-and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [53] K. L. Tsakmakidis, T. W. Pickering, J. M. Hamm. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett., 112, 167401(2014).

    [54] J. Li, G. Hu, L. Shi. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun., 12, 6425(2021).

    [55] T. Niemi, L. H. Frandsen, K. K. Hede. Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett., 18, 226-228(2006).

    [56] C. Lu, C. Wang, M. Xiao. Topological rainbow concentrator based on synthetic dimension. Phys. Rev. Lett., 126, 113902(2021).

    [57] S. Elshahat, C. Wang, H. Zhang. Perspective on the topological rainbow. Appl. Phys. Lett., 119, 230505(2021).

    [58] Y. Mao, Z. Li, W. Hu. Topological slow light rainbow trapping and releasing based on gradient valley photonic crystal. J. Lightwave Technol., 40, 5152-5156(2022).

    [59] C. Lu, Y. Z. Sun, C. Wang. On-chip nanophotonic topological rainbow. Nat. Commun., 13, 2586(2022).

    [60] X. Wang, W. Zhao, S. Elshahat. Topological rainbow trapping based on gradual valley photonic crystals. Front. Phys., 11, 1141997(2023).

    [61] Z. Qi, G. Hu, C. Deng. Electrical tunable topological valley photonic crystals for on-chip optical communications in the telecom band. Nanophotonics, 11, 4273-4285(2022).

    [62] A. Kumar, M. Gupta, P. Pitchappa. Phototunable chip-scale topological photonics: 160  Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun., 13, 5404(2022).

    [63] Y. Ruan, X. Qian, H.-X. Wang. Applications for wavelength division multiplexers based on topological photonic crystals. Photon. Res., 11, 569-574(2023).

    [64] G.-J. Tang, X.-D. Chen, F.-L. Shi. Frequency range dependent topological phases and photonic detouring in valley photonic crystals. Phys. Rev. B, 102, 174202(2020).

    [65] F. Gao, Z. Gao, X. Shi. Probing topological protection using a designer surface plasmon structure. Nat. Commun., 7, 11619(2016).

    [66] J. Pendry, L. Martin-Moreno, F. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [67] X.-D. Chen, F.-L. Shi, H. Liu. Tunable electromagnetic flow control in valley photonic crystal waveguides. Phys. Rev. Appl., 10, 044002(2018).

    Jiajun Ma, Chunmei Ouyang, Yuting Yang, Dongyang Wang, Hongyi Li, Li Niu, Yi Liu, Quan Xu, Yanfeng Li, Zhen Tian, Jiaguang Han, Weili Zhang, "Asymmetric frequency multiplexing topological devices based on a floating edge band," Photonics Res. 12, 1201 (2024)
    Download Citation