
- High Power Laser Science and Engineering
- Vol. 8, Issue 2, 02000e27 (2020)
Abstract
Keywords
1 Introduction
The development of mid-infrared (IR) ultrafast pulsed lasers of high intensity, short pulse duration and tunable carrier wavelength at
Previously, Zhang et al. reported an OPA scheme termed dual-chirped optical parametric amplification (DC-OPA)[
In this study, specific to an oppositely dual-chirped DFG scheme, we derive the precondition to realize broadband frequency conversion. Then, to select the proper nonlinear crystals for various parametric processes, we systematically analyze the group-velocity relationship and the gain spectra of different nonlinear crystals at different wavelengths. Thereinto, the periodically poled lithium niobate (PPLN) crystal that satisfies an inactive Type-II (eo-o) quasi-phase-matching (QPM) condition exhibits the required negative correlation coefficient of the group velocity and the expected broadband gain characteristics across an ultra-broad idler spectral region
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Excellent experimental works have been reported on the generation of few-cycle mid-IR pulses. Resorting to a traditional noncollinear PM geometry or a well-designed aperiodic QPM crystal, broadband mid-IR pulsed lasers are directly generated as the idler of a difference frequency generator[
2 Broadband phase-matching condition
In a standard ultrafast OPA/DFG system, the pump and signal pulses are both nearly transform-limited. Nevertheless, prolonged pulse duration is advantageous to relaxing the ubiquitous pulse slipping, reducing the input power density to avoid unwanted disturbing phenomena and potentially providing the PM environment across a broad spectrum.
A simple qualitative picture of such a parametric process is given in Figure
Assuming that the pulsed lasers have been sufficiently stretched and the pulse envelope slipping is negligible, individual temporal slices (i.e., individual spectral components) of the pump and the signal waves are arranged in pairs. The instantaneous wave-vector mismatch of
3 Selection of the nonlinear crystal
Generally, the group velocity and the resulting correlation coefficient of
On one hand, a negative
As shown in Figure
Intrinsically, oppositely dual-chirped DFG is capable of generating the conspicuously broader mid-IR pulsed seeding than the driving pulsed lasers, which is the premise of generating the high-intensity pulsed laser. However, only if the broadband PM condition is satisfied can the subsequent effective energy transfer be realized. Provided that an appropriate nonlinear crystal material is selected and the pump and signal waves are properly pre-chirped, broadband frequency conversion is achievable over an extremely broad spectral range.
PPLN | 2.9 | 1 | 2.25 | 2.15 | 2.14 |
YCOB | 1.06 | 3.2 | 1.67 | 1.69 | 1.61 |
PPLN | 432 | 246 | |||
YCOB | 200 | 33 | 158 | 100 |
Table 1. Nonlinear optical parameters for the 5% doped MgO:PPLN and the YCOB crystal at (
,
,
).
4 Gain characteristics of the Type-II PPLN crystal
According to the crystal-selection strategy presented in the previous section, the Type-II PPLN crystal shows an attractive application to generate high-intensity pulsed laser at
We take a conventional 790 nm Ti:sapphire pulsed laser as the pump laser, for which
The conversion efficiency and the idler spectral bandwidth versus the ratio of
Both the obtained idler spectrum and the conversion efficiency exhibit similar trends as a function of the ratio of
Further, we chose another nonlinear crystal with a positive group-velocity coefficient
In conclusion, the oppositely dual-chirped DFG scheme may provide the simultaneous achievement of higher conversion efficiency, broadened idler spectrum and potentially shorter pulse duration after compression if the broadband PM condition is satisfied.
5 Tunable mid-IR spectrum broader
When the constant chirped pump wave is utilized, a broader signal wave is advantageous to the generation of a broader idler wave. To evaluate the performance of such a difference frequency generator as the spectrum broader, we introduce the gain in spectrum, defined as the ratio between the bandwidth of the obtained idler wave
Note that
As a conclusion, the broadband phase-matched oppositely dual-chirped DFG shows an extraordinary ability to make the most of the pump energy and spectral components of the interacting pump and signal waves achieve efficient idler broadening. However, the initial linear chirps
As shown in Figure
Assuming a 10 mm Type-II PPLN crystal is employed, the initial
Figures
6 Conclusion
Oppositely dual-chirped DFG is advantageous for obtaining a spectrum-broadened idler seeding compared with the incident pump and signal waves. However, the normally more rigorous broadband PM condition hampers its application in the generation of an ultrafast mid-IR pulsed laser. In association with the fundamental PM equations and the chirp characteristics of such DFG schemes, we derived the intrinsic requirement of the broadband frequency conversion on both the group-velocity correlation and the chirp parameters, and used this as a strategy to choose the appropriate nonlinear crystals for various parametric processes. Although most of the birefringence bulk crystals can only provide the required material dispersions in extremely limited spectral regions, the PPLN crystal that satisfies an inactive Type-II (eo-o) QPM condition has a relatively stable negative
References
[1] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, A. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Science, 336, 1287(2012).
[2] S. Ghimire, D. A. Reis. Nat. Phys., 15, 10(2019).
[3] H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee. Phys. Rev. Lett., 111(2013).
[4] D. Woodbury, L. Feder, V. Shumakova, C. Gollner, R. Schwartz, B. Miao, F. Salehi, A. Korolov, A. Pugžlys, A. Baltuška, H. M. Milchberg. Opt. Lett., 43, 1131(2018).
[5] F. Keilmann, C. Gohle, R. Holzwarth. Opt. Lett., 29, 1542(2004).
[6] S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M. Jo, H. Choi. Nat. Commun., 7, 10768(2016).
[7] K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian. Opt. Lett., 38, 2159(2013).
[8] C. Xi, P. Wang, X. Li, Z. Liu. High Power Laser Sci. Eng., 7, e67(2019).
[9] N. Ishii, P. Xia, T. Kanai, J. Itatani. Opt. Express, 27(2019).
[10] G. Cerullo, S. D. Silvestri. Rev. Sci. Instrum., 74, 1(2003).
[11] G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M. Chen, M. M. Murnane, H. C. Kapteyn. Opt. Lett., 36, 2755(2011).
[12] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, J. Biegert. Nat. Photonics, 9, 721(2015).
[13] Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu, K. Midorikawa. Opt. Express, 19, 7190(2011).
[14] Y. Fua, B. Xue, K. Midorikawa, E. J. Takahashi. Appl. Phys. Lett., 112(2018).
[15] Y. Fu, E. J. Takahashi, Q. Zhang, P. Lu, K. Midorikawa. J. Opt., 17(2015).
[16] F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret, A. Migus. Opt. Lett., 24, 354(1999).
[17] O. Gobert, G. Mennerat, R. Maksimenka, N. Fedorov, M. Perdrix, D. Guillaumet, C. Ramond, J. Habib, C. Prigent, D. Vernhet, T. Oksenhendler, M. Comte. Appl. Opt., 53, 2646(2014).
[18] H. Luo, L. Qian, P. Yuan, H. Zhu. Opt. Express, 14(2006).
[19] Y. Li, Y. Liang, D. Dai, J. Yang, H. Zhong, D. Fan. Photon. Res., 5, 669(2017).
[20] B. W. Mayer, C. R. Phillips, L. Gallmann, U. Keller. Opt. Express, 22(2014).
[21] M. Mero, V. Petrov. IEEE Photonics J., 9(2017).
[22] S. Witte, K. S. E. Eikema. IEEE J. Sel. Top. Quantum Electron., 18, 296(2011).
[23] O. Gayer, Z. Sacks, E. Galun, A. Arie. Appl. Phys. B, 91, 343(2008).
[24] P. Segonds, B. Boulanger, J. Fève, B. Ménaert, J. Zaccaro, G. Aka, D. Pelenc. J. Opt. Soc. Am. B, 21, 765(2004).
[25] K. Kato. IEEE J. Quantum Electron., 30, 2950(1994).
[26] H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg. Appl. Opt., 27, 3314(1988).
[27] J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng, L. Qian. Optica, 2, 1006(2015).
[28] M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, I. Breunig. Opt. Express, 23(2015).
[29] Y. Fu, E. J. Takahashi, K. Midorikawa. Opt. Lett., 40, 5082(2015).
[30] Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, Z. Chang. Opt. Express, 24(2016).
[31] N. Bigler, J. Pupeikis, S. Hrisafov, L. Gallmann, C. R. Phillips, U. Keller. Opt. Express, 26(2018).
[32] M. Y. Hu, X. Y. Liang, B. Z. Zhao, R. X. Li, Z. Z. Xu. Jpn. J. Appl. Phys., 46, 5148(2007).
[33] C. Neese, C. R. Phillips, L. Gallmann, M. M. Fejer, U. Keller. Opt. Lett., 35, 2340(2010).
[34] N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira. Opt. Lett., 27, 1046(2002).
[35] H. Zhong, L. Zhang, Y. Li, D. Fan. Sci. Rep., 5(2015).
[36] Y. Li, H. Z. Zhong, J. L. Yang, S. W. Wang, D. Y. Fan. Opt. Lett., 42, 2806(2017).
[37] V. Petrov, F. Noack. J. Opt. Soc. Am. B, 12, 2214(1995).
[38] K. Osvay, I. N. Ross. J. Opt. Soc. Am. B, 13, 1431(1996).
[39] S. Sukeert, S. C. Kumar, M. Ebrahim-Zadeh. Opt. Lett., 44, 5796(2019).
[40] M. K. Reed, M. K. Steiner-Shepard, D. K. Negus. Opt. Lett., 19, 1855(1994).
[41] A. Shirakawa, T. Kobayashi. Appl. Phys. Lett., 72, 147(1998).

Set citation alerts for the article
Please enter your email address