• Bulletin of the Chinese Ceramic Society
  • Vol. 44, Issue 2, 651 (2025)
CHEN Yujie, LI Junsheng*, LI Chenxiao, CHEN Yurong, and WAN Fan
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.16552/j.cnki.issn1001-1625.2024.1042 Cite this Article
    CHEN Yujie, LI Junsheng, LI Chenxiao, CHEN Yurong, WAN Fan. Research Progress on Sintering Densification Technology of h-BN Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 651 Copy Citation Text show less
    References

    [1] STEHLE Y, MEYER H M III, UNOCIC R R, et al. Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology[J]. Chemistry of Materials, 2015, 27(23): 8041-8047.

    [2] PEREVISLOV S N. Structure, properties, and applications of graphite-like hexagonal boron nitride[J]. Refractories and Industrial Ceramics, 2019, 60(3): 291-295.

    [3] ZHANG Z W, HU S Q, CHEN J, et al. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation[J]. Nanotechnology, 2017, 28(22): 225704.

    [4] JIANG P Q, QIAN X, YANG R G, et al. Anisotropic thermal transport in bulk hexagonal boron nitride[J]. Physical Review Materials, 2018, 2(6): 064005.

    [5] CAO C C, YANG J W, YANG S B, et al. Pressureless welding of temperature-invariant multifunctionality body based on hydroxyl-functionalized boron nitride nanosheets and bifunctional monoethanolamine cross-linker[J]. Small, 2024, 20(38): e2401387.

    [6] DUAN X M, WANG M R, JIA D C, et al. Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics[J]. Materials Science and Engineering: A, 2014, 607: 38-43.

    [7] GAO X J, YAN D M, CAO J W, et al. The study on the property and the microstructure of pressureless sintered h-BN ceramics[J]. Advanced Materials Research, 2015, 1104: 9-14.

    [9] HAGIO T, KOBAYASHI K, YOSHIDA H, et al. Sintering of the mechanochemically activated powders of hexagonal boron nitride[J]. Journal of the American Ceramic Society, 1989, 72(8): 1482-1484.

    [10] WANG T B, JIN C C, YANG J, et al. Physical and mechanical properties of hexagonal boron nitride ceramic fabricated by pressureless sintering without additive[J]. Advances in Applied Ceramics, 2015, 114(5): 273-276.

    [13] ZHANG X, CHEN J X, LI X C, et al. Microstructure and mechanical properties of h-BN/Y2SiO5 composites[J]. Ceramics International, 2015, 41(1): 1279-1283.

    [14] TIAN Z, LU J N, FENG X W, et al. Effects of cross-scale h-BN grains and orientation degree on the mechanical and thermal properties of BN-matrix textured ceramics[J]. Ceramics International, 2023, 49(8): 12481-12490.

    [15] DENG Y C, WU S L, JIANG Y J, et al. Study on viscosity of the La2O3-SiO2-Al2O3 slag system[J]. Metallurgical and Materials Transactions B, 2016, 47(4): 2433-2439.

    [16] IFTEKHAR S, GRINS J, EDN M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system[J]. Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 1043-1048.

    [17] NIU B, CAI D L, YANG Z H, et al. Anisotropies in structure and properties of hot-press sintered h-BN-MAS composite ceramics: effects of raw h-BN particle size[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 539-546.

    [18] QIU B F, DUAN X M, ZHANG Z, et al. Microstructural evolution and mechanical properties of h-BN composite ceramics with Y2O3-AlN addition by liquid-phase sintering[J]. Rare Metals, 2020, 39(5): 555-561.

    [19] TIAN Z, WANG Y, ZHANG Z, et al. Preparation of highly oriented h-BN based textured ceramics via grain rearrangement under DLP printing and low-pressure sintering[J]. Materials Letters, 2020, 268: 127584.

    [21] FAZEN P J, REMSEN E E, BECK J S, et al. Synthesis, properties, and ceramic conversion reactions of polyborazylene. A high-yield polymeric precursor to boron nitride[J]. Chemistry of Materials, 1995, 7(10): 1942-1956.

    [22] ESLAMI-SHAHED H, NEKOUEE K, EHSANI N. The effects of adding CNTs and GNPs on the microstructure and mechanical properties of hexagonal-boron nitride[J]. Ceramics International, 2020, 46(14): 22005-22014.

    [23] XUE J X, LIU J X, XIE B H, et al. Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics[J]. Scripta Materialia, 2011, 65(11): 966-969.

    [24] QIU B F, DUAN X M, ZHANG Z, et al. Microstructure and room/elevated-temperature mechanical properties of hot-pressed h-BN composite ceramics with La2O3-Al2O3-SiO2 addition[J]. Journal of the European Ceramic Society, 2020, 40(6): 2260-2267.

    [25] QIU B F, DUAN X M, ZHANG Z, et al. Microstructural evolution of h-BN matrix composite ceramics with La-Al-Si-O glass phase during hot-pressed sintering[J]. Journal of Advanced Ceramics, 2021, 10(3): 493-501.

    [26] ERTUG B, BOYRAZ T, ADDEMIR O. Microstructural aspects of the hot-pressed hexagonal boron nitride ceramics with limited content of boron oxide[J]. Materials Science Forum, 2007, 554: 197-200.

    [28] NIU B, YANG Z H, CAI D L, et al. MAS-content dependence of the texture and fracture behavior of h-BN-MAS composite ceramics[J]. Ceramics International, 2019, 45(15): 18536-18542.

    [29] WANG H Y, CAI D L, YANG Z H, et al. Influence of sintering temperature on the crystallization and mechanical properties of BN-MAS composites[J]. Journal of the American Ceramic Society, 2022, 105(5): 3590-3600.

    [30] NIU B, CAI D L, YANG Z H, et al. Effects of sintering temperature on the microstructure and properties of h-BN ceramics with MAS as liquid sintering aid[J]. Ceramics International, 2020, 46(1): 1076-1082.

    [31] LIAO N, NIU B, QIU B F, et al. Enhanced thermal shock resistance of BN-based composites sintered by hot-pressing with the introduction of nano oxides[J]. Materials Science and Engineering: A, 2019, 767: 138443.

    [32] ZHANG Z, DUAN X M, QIU B F, et al. Anisotropic properties of textured h-BN matrix ceramics prepared using 3Y2O3-5Al2O3(-4MgO) as sintering additives[J]. Journal of the European Ceramic Society, 2019, 39(5): 1788-1795.

    [33] GUILLON O, GONZALEZ-JULIAN J, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849.

    [34] HU J, SHEN Z. Grain growth by multiple ordered coalescence of nanocrystals during spark plasma sintering of SrTiO3 nanopowders[J]. Acta Materialia, 2012, 60(18): 6405-6412.

    [35] SHEN Z J, JOHNSSON M, ZHAO Z, et al. Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927.

    [36] CHEN J J, CHENG J, ZHU S Y, et al. Tribological behavior under 1 200 ℃ elevated temperature of spark plasma sintered h-BN bulk[J]. Tribology International, 2024, 193: 109420.

    [37] ZHAI F R, LI S, SUN J L, et al. Microstructure, mechanical properties and thermal shock behavior of h-BN-SiC ceramic composites prepared by spark plasma sintering[J]. Ceramics International, 2017, 43(2): 2413-2417.

    [39] ZHAI F R, LU M, SHAN K, et al. Spark plasma sintering and characterization of mixed h-BN powders with different grain sizes[J]. Solid State Phenomena, 2018, 281: 414-419.

    [40] YILMAZ Z, AY N. The investigation of synthesis and textured properties of in situ formed h-BN with spark plasma sintering[J]. Materials Chemistry and Physics, 2024, 316: 129043.

    [41] YANG H T, FANG H L, YU H, et al. Low temperature self-densification of high strength bulk hexagonal boron nitride[J]. Nature Communications, 2019, 10(1): 854.

    [43] GAO X J, ZHANG C, MAN P, et al. Reaction mechanism and microstructure evolution of reaction sintered h-BN[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(2): 345-348.

    [44] GAO X J, ZHANG C, LI Z P, et al. Fabrications, microstructure and mechanical behaviors of h-BN matrix ceramic[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(7): 969-973.

    [46] LIU K, WANG J, WU T, et al. Effects of carbon content on microstructure and mechanical properties of SiC ceramics fabricated by SLS/RMI composite process[J]. Ceramics International, 2020, 46(14): 22015-22023.

    [48] XIE Z P, LI S, AN L N. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics[J]. Journal of the American Ceramic Society, 2014, 97(4): 1012-1015.

    [49] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: rapid densification with limited grain growth[J]. Journal of the American Ceramic Society, 2017, 100(7): 2774-2780.

    [52] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: densification trajectories and mechanical properties[J]. Journal of the American Ceramic Society, 2018, 101(5): 1824-1829.

    [54] CANNON R M, CARTER W C. Interplay of sintering microstructures, driving forces, and mass transport mechanisms[J]. Journal of the American Ceramic Society, 1989, 72(8): 1550-1555.

    [55] ROLLETT A D, SROLOVITZ D J, ANDERSON M P. Simulation and theory of abnormal grain growth: anisotropic grain boundary energies and mobilities[J]. Acta Metallurgica, 1989, 37(4): 1227-1240.

    [56] JIANG R, SHI Z Y, ZHAO W, et al. Vacancy-assisted growth mechanism of multilayer hexagonal boron nitride on a Fe2B substrate[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8511-8517.

    [57] CAO C C, YANG J W, YANG S B, et al. Pressureless consolidation of boron nitride fiber ceramics via a chemical bonding approach[J]. Journal of the European Ceramic Society, 2023, 43(12): 5223-5230.

    [58] GUO J, GUO H Z, BAKER A L, et al. Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie (International Edition), 2016, 55(38): 11457-11461.

    [59] SENGUL M Y, GUO J, RANDALL C A, et al. Water-mediated surface diffusion mechanism enables the cold sintering process: a combined computational and experimental study[J]. Angewandte Chemie (International Edition), 2019, 58(36): 12420-12424.

    [60] MARIA J P, KANG X Y, FLOYD R D, et al. Cold sintering: current status and prospects[J]. Journal of Materials Research, 2017, 32(17): 3205-3218.

    [61] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics[J]. Journal of the American Ceramic Society, 2016, 99(11): 3489-3507.

    [62] GUO H Z, BAYER T J M, GUO J, et al. Cold sintering process for 8%Y2O3-stabilized ZrO2 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(5): 2303-2308.

    [63] KHRI H, TEIRIKANGAS M, JUUTI J, et al. Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics[J]. Journal of the American Ceramic Society, 2015, 98(3): 687-689.

    [64] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: pss composites[J]. Journal of the European Ceramic Society, 2017, 37(4): 1529-1534.

    [65] BAKER A, GUO H Z, GUO J, et al. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication[J]. Journal of the American Ceramic Society, 2016, 99(10): 3202-3204.

    [66] GUO H Z, GUO J, BAKER A, et al. Cold sintering process for ZrO2-based ceramics: significantly enhanced densification evolution in yttria-doped ZrO2[J]. Journal of the American Ceramic Society, 2017, 100(2): 491-495.

    [67] FUNAHASHI S, GUO J, GUO H Z, et al. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2): 546-553.

    [68] ZHU J Y, LI F, HOU Y Z, et al. Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets[J]. Nature Materials, 2024, 23(5): 604-611.

    CHEN Yujie, LI Junsheng, LI Chenxiao, CHEN Yurong, WAN Fan. Research Progress on Sintering Densification Technology of h-BN Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 651
    Download Citation