• Matter and Radiation at Extremes
  • Vol. 5, Issue 5, 054402 (2020)
Kun Xue1, Zhen-Ke Dou1, Feng Wan1, Tong-Pu Yu2, Wei-Min Wang3, Jie-Ru Ren1, Qian Zhao1, Yong-Tao Zhao1, Zhong-Feng Xu1, and Jian-Xing Li1、a)
Author Affiliations
  • 1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • 2Department of Physics, National University of Defense Technology, Changsha 410073, China
  • 3Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
  • show less
    DOI: 10.1063/5.0007734 Cite this Article
    Kun Xue, Zhen-Ke Dou, Feng Wan, Tong-Pu Yu, Wei-Min Wang, Jie-Ru Ren, Qian Zhao, Yong-Tao Zhao, Zhong-Feng Xu, Jian-Xing Li. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(5): 054402 Copy Citation Text show less
    References

    [1] U. I. Uggerhøj. The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys., 77, 1131-1171(2005).

    [2] G. Moortgat-Pick, T. Abe, G. Alexander et al. Polarized positrons and electrons at the linear collider. Phys. Rep., 460, 131-243(2008).

    [3] O. Mattelaer, C. Bœhm, C. Degrande, A. C. Vincent. Circular polarisation: A new probe of dark matter and neutrinos in the sky. J. Cosmol. Astropart. Phys., 2017, 043.

    [4] K. Pottschmidt, J. Wilms, V. Grinberg, P. Laurent, M. Cadolle Bel, J. Rodriguez. Polarized gamma-ray emission from the galactic black hole cygnus X-1. Science, 332, 438-439(2011).

    [5] A. van der Woude, J. Speth. Giant resonances in nuclei. Rep. Prog. Phys., 44, 719-786(1981).

    [6] S. Park, P. Roy, Z. Akbar et al. Measurement of the helicity asymmetry e in ωπ+ππ0 photoproduction. Phys. Rev. C, 96, 065209(2017).

    [7] N. Elkina, B. King. Vacuum birefringence in high-energy laser-electron collisions. Phys. Rev. A, 94, 062102(2016).

    [8] A. Ilderton, M. Marklund. Prospects for studying vacuum polarisation using dipole and synchrotron radiation. J. Plasma Phys., 82, 655820201(2016).

    [9] O. Tesileanu, L. D’Alessi, M. Zeng, L. Neagu, M. Cuciuc, M. Rosu, Y. Xu, S. Ataman, K. Seto. Experiments with combined laser and gamma beams at ELI-NP. AIP Conf. Proc., 1852, 070002(2017).

    [10] Y. Nakamiya, K. Homma. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale. Phys. Rev. D, 96, 053002(2017).

    [11] S. Meuren, A. Di Piazza, S. Bragin, C. H. Keitel. High-energy vacuum birefringence and dichroism in an ultrastrong laser field. Phys. Rev. Lett., 119, 250403(2017).

    [12] L. C. Maximon, H. Olsen. Photon and electron polarization in high-energy bremsstrahlung and pair production with screening. Phys. Rev., 114, 887-904(1959).

    [13] D. Abbott et al. Production of highly polarized positrons using polarized electrons at MeV energies. Phys. Rev. Lett., 116, 214801(2016).

    [14] T. Omori, M. Fukuda, T. Hirose et al. Efficient propagation of polarization from laser photons to positrons through Compton scattering and electron-positron pair creation. Phys. Rev. Lett., 96, 114801(2006).

    [15] J. Barley, G. Alexander, Y. Batygin et al. Observation of polarized positrons from an undulator-based source. Phys. Rev. Lett., 100, 210801(2008).

    [16] A. Bacci, V. Petrillo, C. Curatolo et al. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering. Phys. Rev. Spec. Top.--Accel. Beams, 18, 110701(2015).

    [17] V. M. Strakhovenko, V. M. Katkov, V. N. Baier. Electromagnetic Processes at High Energies in Oriented Single Crystals(1998).

    [18] J. Ahrens, J. Peise, D. Lohmann et al. Linearly polarized photons at MAMI (Mainz). Nucl. Instrum. Methods Phys. Res., Sect. A, 343, 494-507(1994).

    [19] R. Carrigan, J. Ellison. Relativistic Channeling(1987).

    [20] V. M. Biryukov, Y. A. Chesnokov, V. I. Kotov. Crystal Channeling and its Application at High Energy Accelerators(1997).

    [21] H. T. Kim, I. W. Choi, J. H. Sung, C. Jeon, J. Shin, H. W. Lee, S. K. Lee, J. W. Yoon, C. H. Nam. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express, 27, 20412-20420(2019).

    [22] C. Haefner, J. Bromage, C. N. Danson et al. Petawatt and exsawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).

    [23] D. L. Balabanski, S. Gales, K. A. Tanaka et al. The extreme light infrastructure–nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys., 81, 094301(2018).

    [24]

    [25]

    [26]

    [27]

    [28] C. Müller, K. Z. Hatsagortsyan, A. Negoita, C. H. Keitel. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).

    [29] T. G. Blackburn. Radiation reaction in electron-beam interactions with high-intensity lasers. Rev. Mod. Plasma Phys., 4, 5(2020).

    [30] D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, J. G. Kirk, C. D. Murphy, C. P. Ridgers. Spin polarization of electrons by ultraintense lasers. Phys. Rev. A, 96, 043407(2017).

    [31] C. P. Ridgers, A. G. R. Thomas, D. Seipt, D. Del Sorbo. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers. Plasma Phys. Controlled Fusion, 60, 064003(2018).

    [32] D. Del Sorbo, D. Seipt, C. P. Ridgers, A. G. R. Thomas. Theory of radiative electron polarization in strong laser fields. Phys. Rev. A, 98, 023417(2018).

    [33] A. G. R. Thomas, C. P. Ridgers, D. Del Sorbo, D. Seipt. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(R)(2019).

    [34] F. Wan, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel, R. Shaisultanov, J.-X. Li. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).

    [35] Y.-T. Li, H.-H. Song, W.-M. Wang, J.-X. Li, Y.-F. Li. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse. Phys. Rev. A, 100, 033407(2019).

    [36] R. Shaisultanov, R.-T. Guo, K. Z. Hatsagortsyan, J.-X. Li, Y.-F. Li. Electron polarimetry with nonlinear Compton scattering. Phys. Rev. Appl., 12, 014047(2019).

    [37] K. Z. Hatsagortsyan, R. Shaisultanov, Y.-Y. Chen, P.-L. He, C. H. Keitel. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).

    [38] F. Wan, R. Shaisultanov, Y.-F. Li, C. H. Keitel, K. Z. Hatsagortsyan, J.-X. Li. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams. Phys. Lett. B, 800, 135120(2020).

    [39] V. G. Serbo, D. Y. Ivanov, G. L. Kotkin. Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave. Eur. Phys. J. C, 36, 127-145(2004).

    [40] N. Elkina, B. King, H. Ruhl. Photon polarization in electron-seeded pair-creation cascades. Phys. Rev. A, 87, 042117(2013).

    [41] F. Wan, R. Shaisultanov, Y.-Y. Chen, C. H. Keitel, Y.-F. Li, J.-X. Li, K. Z. Hatsagortsyan. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction. Phys. Rev. Lett., 124, 014801(2020).

    [42] K. Z. Hatsagortsyan, Y.-Y. Chen, C. H. Keitel, Y. Wang, F. Wan, R.-T. Guo, Z.-F. Xu, J.-X. Li, R. Shaisultanov. High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ-polarimetry.

    [43] M. Kando, T. Hayakawa, K. Kawase et al. Sub-MeV tunably polarized X-ray production with laser Thomson backscattering. Rev. Sci. Instrum., 79, 053302(2008).

    [44] Y.-L. Chi, Y.-L. Dang, G.-P. An et al. High energy and high brightness laser Compton backscattering gamma-ray source at IHEP. Matter Radiat. Extremes, 3, 219-226(2018).

    [45] B. Fu, S. Tang. Nonlinear Compton scattering of polarised photons in plane-wave backgrounds(2020).

    [46] B. King, H. Hu, S. Tang. Highly polarised gamma photons from electron-laser collisions(2020).

    [47] J. A. Wheeler, G. Breit. Collision of two light quanta. Phys. Rev., 46, 1087-1091(1934).

    [48] H. R. Reiss. Absorption of light by light. J. Math. Phys., 3, 59-67(1962).

    [49] V. I. Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497(1985).

    [50] K. T. McDonald, C. Bula, E. J. Prebys et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett., 76, 3116-3119(1996).

    [51] L. S. Brown, T. W. B. Kibble. Interaction of intense laser beams with electrons. Phys. Rev., 133, A705-A719(1964).

    [52] A. I. Nikishov, V. I. Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Sov. Phys. JETP, 19, 529(1964).

    [53] J. W. Motz, H. W. Koch, H. A. Olsen. Pair production by photons. Rev. Mod. Phys., 41, 581-639(1969).

    [54] G. L. Kotkin, V. G. Serbo, D. Y. Ivanov. Complete description of polarization effects in e+e pair production by a photon in the field of a strong laser wave. Eur. Phys. J. C, 40, 27(2005).

    [55] C. Thaury, A. Rousse, R. C. Shah, K. T. Phuoc, S. Sebban, S. Corde, V. Malka, J. P. Goddet, A. Tafzi. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308(2012).

    [56] S. Chen, I. Ghebregziabher, N. D. Powers et al. MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett., 110, 155003(2013).

    [57] D. J. Corvan, W. Schumaker, G. Sarri et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett., 113, 224801(2014).

    [58] M. Chen, D. Haden, J. Zhang, G. Golovin, S. Banerjee, C. Fruhling, B. Zhao, W. Yan, S. Chen, C. Liu, P. Zhang, J. Luo, D. Umstadter. High-order multiphoton Thomson scattering. Nat. Photonics, 11, 514-520(2017).

    [59] V. Malka, J. P. Rousseau, B. Mercier, F. Burgy, J. Faure, T. Hosokai, S. Darbon, L. L. Dain, E. Lefebvre, Y. Glinec, J. J. Santos. High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett., 94, 025003(2005).

    [60] N. Bourgeois, T. Ceccotti, A. Giulietti et al. Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett., 101, 105002(2008).

    [61] T. Toncian, D. J. Stark, A. V. Arefiev. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett., 116, 185003(2016).

    [62] A. Benedetti, C. H. Keitel, M. Tamburini. Giant collimated gamma-ray flashes. Nat. Photonics, 12, 319(2018).

    [63] M. Zepf, B. Qiao, C. T. Zhou, Z. Xu, T. W. Huang, Y. Q. Gu, X. Q. Yan, X. T. He, H. X. Chang. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Sci. Rep., 7, 45031(2017).

    [64] Z.-M. Sheng, A. Pukhov, G. Shvets, T.-P. Yu, F. Liu. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target. Phys. Rev. Lett., 110, 045001(2013).

    [65] Z.-M. Sheng, L.-M. Chen, P. Gibbon, W.-M. Wang, Y.-T. Li, J. Zhang. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911(2018).

    [66] X.-L. Zhu, J.-J. Liu, T.-P. Yu, W.-Q. Wang, F.-Q. Shao, Z.-Y. Ge, Y. Yin. Enhanced electron trapping and γ-ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone. New J. Phys., 17, 053039(2015).

    [67] L.-X. Hu, M. Chen, P. McKenna, Z.-M. Sheng, T.-P. Yu, S.-M. Weng, X.-L. Zhu. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets. Appl. Phys. Lett., 112, 174102(2018).

    [68] Y.-J. Gu, O. Klimo, S. V. Bulanov, S. Weber. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses. Commun. Phys., 1, 93(2018).

    [69] M. Jirka, Y.-J. Gu, S. Weber, O. Klimo. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations. Matter Radiat. Extremes, 4, 064403(2019).

    [70] K. Bennett, T. D. Arber, R. Duclous, C. S. Brady, C. P. Ridgers, A. P. L. Robinson, A. R. Bell, J. G. Kirk. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [71] T. D. Arber, K. Bennett, C. S. Brady et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).

    [72] A. Di Piazza, M. Tamburini, S. Meuren, C. H. Keitel. Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys. Rev. A, 98, 012134(2018).

    [73] A. Ilderton. Note on the conjectured breakdown of QED perturbation theory in strong fields. Phys. Rev. D, 99, 085002(2019).

    [74] A. Di Piazza, S. Meuren, C. H. Keitel, M. Tamburini. Improved local-constant-field approximation for strong-field QED codes. Phys. Rev. A, 99, 022125(2019).

    [75] J. Koga, S. V. Bulanov, T. Z. Esirkepov. Nonlinear Thomson scattering in the strong radiation damping regime. Phys. Plasmas, 12, 093106(2005).

    [76] V. M. Katkov, V. S. Fadin, V. N. Baier. Radiation from Relativistic Electrons(1973).

    [77] W. H. McMaster. Matrix representation of polarization. Rev. Mod. Phys., 33, 8-28(1961).

    [78] L. H. Thomas. The motion of the spinning electron. Nature, 117, 514(1926).

    [79] L. H. Thomas. The kinematics of an electron with an axis. Philos. Mag., 3, 1-22(1927).

    [80] V. Bargmann, V. L. Telegdi, L. Michel. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435-436(1959).

    [81] K. Yokoya.

    [82] C. Bellei, M. Zepf, A. P. L. Robinson, P. Gibbon, S. Kar, R. G. Evans. Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Controlled Fusion, 51, 024004(2009).

    [83] T. Erber. High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys., 38, 626-659(1966).

    [84] F. Mackenroth, O. J. Pike, E. G. Hill, S. J. Rose. A photon–photon collider in a vacuum hohlraum. Nat. Photonics, 8, 434-436(2014).

    [85] H. Zhang, T.-P. Yu, W.-Q. Wang, X.-R. Xu, L.-X. Hu, Y. Lu, J. Zhao, K. Liu, Y.-T. Hu, D.-B. Zou. Effect of laser polarization on the electron dynamics and photon emission in near-critical-density plasmas. Plasma Phys. Controlled Fusion, 62, 035002(2020).

    [86] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii. Quantum Electrodynamics(1982).

    Kun Xue, Zhen-Ke Dou, Feng Wan, Tong-Pu Yu, Wei-Min Wang, Jie-Ru Ren, Qian Zhao, Yong-Tao Zhao, Zhong-Feng Xu, Jian-Xing Li. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(5): 054402
    Download Citation